首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Keras中创建LSTM模型的步骤

; 如何将所有连接在一起,在 Keras 开发和运行您的第一个 LSTM 循环神经网络。...接下来,让我们来看看一个标准时间序列预测问题,我们可以用作此实验的上下文。 1、定义网络 第一步是定义您的网络。 神经网络在 Keras 中定义为一系列图层。这些图层的容器是顺序类。...这将提供网络在将来预测不可见数据时的性能估计。 该模型评估所有测试模式的损失,以及编译模型时指定的任何其他指标,如分类准确性。返回评估指标列表。...例如: predictions = model.predict(X) 预测将返回网络输出层提供的格式。 在回归问题的情况下,这些预测可能采用问题格式,由线性激活函数提供。...对于多类分类问题,结果可能采用概率数组(假设一个热编码的输出变量),可能需要使用 argmax() NumPy 函数转换为单个类输出预测。

3.7K10

用Keras LSTM构建编码器-解码器模型

1-预处理 先决条件:了解Keras中的类“tokenizer”和“pad_sequences”。如果你想详细回顾一下,我们在上一个教程中讨论过这个主题。 首先,我们将导入库,然后读取下载的数据。...因此,更重要的是,它还减少了LSTM时间步数,减少了计算需求和复杂性。 我们使用填充来使每种语言中句子的最大长度相等。...当返回序列为'False'时,输出是最后一个隐藏状态。 2.2-解码器 编码器层的输出将是最后一个时间步的隐藏状态。然后我们需要把这个向量输入解码器。...在编码器部分,我们只期望在最后一个时间步中有一个向量,而忽略了其他所有的向量,这里我们期望每个时间步都有一个输出向量,这样全连接层就可以进行预测。 ?...我们需要定义的参数是单元数,这个单元数是输出向量的形状,它需要与英语词汇的长度相同。为什么?这个向量的值都接近于零,除了其中一个单位接近于1。

1.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TensorFlow 基础学习 - 2

    让我们来看这样一个场景,让计算机识别不同的服装用品(有提包、鞋子、裤子等10类物品)。我们将用包含10种不同类型的物品图片的数据集来训练一个神经元网络,实现分类。...如果我们要训练一个神经网络,出于多种原因,如果把所有的值都处理成0和1之间,那就更容易得到较好的训练效果。...有很多选项,但目前只用这些(relu和softmax) Relu的意思是 "如果X>0返回X,否则返回0"--所以它的作用是它只把大于0的值传递给网络中的下一层,小于0的也当作0。...] Softmax的意思是 "如果X>0,则返回X,否则返回0" -- 所以它的作用是只把0或更大的值传给下一层的网络。...训练好之后,它将能对格式与训练数据相同,但从未“见过”的新数据做出预测。

    44010

    实战 | 手把手教你用苹果CoreML实现iPhone的目标识别

    我们要把所有Python包装到这个虚拟环境 - 这样和其他版本的python相隔离,不会影响其他版本的python包。这可以让我们在同一个系统上运行不同版本的Python和Keras。...此方法输入CVPixelBuffer(一个包含图像的对象)并返回一个TinyYOLOOutput对象。 这个类的相关部分是MLMultiArray对象。它包含13×13网格的边框预测。...最初我写了features[[channel, cx, cy]],然后所有的边框都反了。浪费了一些时间才想明白...注意Core ML放入数据的顺序! 步骤5:试试吧!...但是,一旦完成了模型转换,预测就很容易了。 对于YOLO,只做预测是不够的。我们仍然需要对模型的输出进行一些额外的处理,需要操作MLMultiArray类。...我们开始写数据输入类。由于我们的层都非常相似,所以我们DataSource将为所有层使用相同的类 - 但是每个层都有自己的实例。

    4.6K80

    教你用 Keras 预测房价!(附代码)

    上面的代码示例演示了如何使用内置优化器来构建线性回归模型,该优化器将使用大标签值对样本进行超重,并介绍如何对预测值和标签执行对数转换的 nls 方法,这将会给样品比较相等的重量。...Keras 中的损失函数 Keras中包含许多用于训练深度学习模型的有用损失函数。例如: mean_absolute_error() 就适用于数值在某种程度上相等的数据集。...该函数使用 clip 操作来确保负值不会传递到日志函数,并且向 clip 后的结果+1,这可确保所有对数转换的输入都具有非负数结果。这个函数与我们在 R 中定义的函数类似。 ?...在我的系统配置中,这返回了对 Tensorflow 的引用。 第二个函数计算日志错误的平方,与内置函数类似。...深度学习可以成为浅层学习问题的有用工具,因为您可以定义自定义的损失函数,这些函数可能会显著提高模型的性能。这不适用于所有问题,但如果预测问题不能很好地映射到标准损失函数,则可能会有用。

    2K20

    如何用 Keras 为序列预测问题开发复杂的编解码循环神经网络?

    该示例为用户开发自己的编解码LSTM模型提供了基础。 在本教程中,你将学会如何用Keras为序列预测问题开发复杂的编解码循环神经网络,包括: 如何在Keras中为序列预测定义一个复杂的编解码模型。...n_units:在编码器和解码器模型中创建的单元的数量,例如128或256。 该函数创建并返回3个模型: train:给定源、目标和偏移目标序列进行训练的模型。...cardinality:输出序列的基数,例如每个时间步长的特征、单词或字符的数量。 该函数返回包含目标序列的列表。 可伸缩序列问题 在本章节中,我们将提出一个可伸缩的序列预测问题。...可以使用Keras内置的to_categorical()函数来实现这个。 可以将所有这些操作都放到get_dataset()这个产生指定数量序列的函数中。...可以在解码的序列上使用numpy的array_equal()函数来检查是否相等。 最后,示例将产生一些预测并打印出解码的源、目标和预测目标序列,以检查模型是否按预期的那样运行。

    2.3K00

    关于机器学习你要了解的 5 件事

    例如,Scikit-learn在其DummyClassifier的分类中提供了一系列基线分类器: stratified 通过尊重训练集类分布来生成随机预测。...most_frequent总是预测训练集中最频繁的标签。 prior总是预测最大化优先级的类(像most_frequent')和"predict_proba返回类的优先级。...fast.ai的Rachel Thomas最近写了一篇关于如何以及为什么创建良好的验证集的文章,并介绍了以下3类数据: 用于训练给定模型的训练集 用于在模型之间进行选择的验证集 (例如,随机森林和神经网络哪个更好地解决了您的问题...使用2017年8月1日到8月15日作为您的验证集不失为一种好的方法,并且所有早期的数据也可以作为您的训练集。...例如,TensorFlow就属于这一类,但Keras不是;但通过pip安装Keras仅需要几秒钟的时间。

    45720

    知识图谱项目实战(一):瑞金医院MMC人工智能辅助构建知识图谱--初赛实体识别【1】

    另外:TP+FP表示所有被 预测为正的样本数量,同理FN+TN为所有被 预测为负的样本数量,TP+FN为 实际为正的样本数量,FP+TN为 实际为负的样本数量。...多类或者多标签目标需要这个参数. 如果为None,每个类别的分数将会返回. 否则,它决定了数据的平均值类型. ‘binary’: 仅报告由pos_label指定的类的结果....三、返回值 precision : 浮点数(如果average不是None) 或浮点数数组, shape =[唯一标签的数量] 二分类中正类的精确率或者在多分类任务中每个类的精确率的加权平均....返回值 f1_score : 浮点数或者是浮点数数组,shape=[唯一标签的数量] 二分类中的正类的F1 score或者是多分类任务中每个类别F1 score的加权平均....精确率 精确率(Precision) 是针对预测结果而言的,其含义是在被所有预测为正的样本中实际为正样本的概率,精确率和准确率看上去有些类似,但是是两个完全不同的概念。

    1.8K20

    【综述专栏】损失函数理解汇总,结合PyTorch和TensorFlow2

    ,熵是表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望。...在分类问题模型中(不一定是二分类),如逻辑回归、神经网络等,在这些模型的最后通常会经过一个sigmoid函数(softmax函数),输出一个概率值(一组概率值),这个概率值反映了预测为正类的可能性(一组概率值反应了所有分类的可能性...的标签,正类为1,负类为0, ? 表示样本 ? 预测为正的概率。 多分类交叉熵损失如下: ? 其中, ? 表示类别的数量, ? 表示变量(0或1),如果该类别和样本 ?...hinge loss专用于二分类问题,标签值 ? ,预测值 ? 。二分类问题的目标函数的要求如下:当 ? 大于等于 ? 或者小于等于 ?...还有一些其他的损失函数,后续也会都加进来。

    1.8K20

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第15章 使用RNN和CNN处理序列

    在本章中,我们将讨论循环神经网络,一类可以预测未来的网络(当然,是到某一点为止)。它们可以分析时间序列数据,比如股票价格,并告诉你什么时候买入和卖出。...所有这些都是同时对每个时间序列进行的。 笔记:默认时,Keras的循环层只返回最后一个输出。要让其返回每个时间步的输出,必须设置return_sequences=True。...训练时需要所有输出,但预测和评估时,只需最后时间步的输出。...和其它自定义类一样,LNSimpleRNNCell继承自keras.layers.Layer。...得益于填充层,每个卷积层输出的序列长度都和输入序列一样,所以训练时的目标可以是完整序列:无需裁剪或降采样。 最后两个模型的序列预测结果最好!

    1.5K11

    使用 YOLO 进行对象检测:保姆级动手教程

    为了选择给定对象的最佳边界框,应用了非最大抑制 (NMS)算法。 YOLO 预测的所有框都有一个与之相关的置信水平。NMS 使用这些置信度值来移除那些低确定性预测的框。...通常,这些都是以低于 0.5 的置信度预测的框。 当所有不确定的边界框都被移除后,只剩下置信度高的框。...如果 NMS 比较两个具有低于选定阈值的交集的框,则两个框都保留在最终预测中。...今天,我们将与 TensorFlow/Keras 密切合作。毫不奇怪,这两个是机器学习领域中最受欢迎的框架之一。这主要是因为 TensorFlow 和 Keras 都提供了丰富的开发能力。...回顾一下,模型所做的检测以一种方便的 Pandas DataFrame 形式返回。我们获取每个检测到的对象的类名、框大小和坐标。

    5.6K10

    独家 | COVID-19:利用Opencv, KerasTensorflow和深度学习进行口罩检测

    无论哪种方式,它都是双赢的! 作为程序员,开发者和计算机视觉/深学习的从业者,我们都需要从Prajna那里学到一些东西——让你的技术,成为你的专注,成为你的天堂。...图13:为什么未检测到前景中的女士戴着口罩?使用Python,OpenCV和TensorFlow/ Keras构建的具有计算机视觉和深度学习功能的面罩检测器是否无效?...在该函数内部,我们构造一个Blob,检测人脸并初始化一系列列表,并将其中两个列表作为返回值返回。这些列表包括我们的人脸(即ROI),位置(人脸位置)和预测值(口罩/无口罩预测列表)。...现在,我们可以通过口罩预测器来进行预测: 上述代码逻辑主要用于提高速度。首先,我们确保至少检测到一张脸(第64行),否则,我们将返回空的pred。...第72行返回我们的人脸边界框位置和相应的戴口罩/不戴口罩预测值。

    1.8K11

    手把手教你用Python库Keras做预测(附代码)

    看完这篇教程,你能掌握以下几点: 如何确定一个模型,为后续的预测做准备 如何用Keras对分类问题进行类及其概率的预测 如何用Keras进行回归预测 现在就让我们开始吧 本文结构 教程共分为三个部分,分别是...接下来,你得用所有的可用数据训练出一个最终的模型。...它被称为“概率预测”,当给定一个新的实例,模型返回该实例属于每一类的概率值。(0-1之间) 在Keras中,我们可以调用predict_proba()函数来实现。...数据对象属于每一个类别的概率作为一个向量返回。 下边的例子对Xnew数据数组中的每个样本进行概率预测。...具体来说,你了解到: 如何确定一个模型,为后续的预测做准备 如何用Keras对分类问题进行类及其概率的预测 如何用Keras进行回归预测 对本文的内容有什么问题吗?

    2.6K80

    Keras中神经网络模型的5阶段生命周期

    多类分类(> 2类):多类对数损失,即“ categorical_crossentropy ”。 您可以查看Keras支持的损失函数套件。...每个epoch可以分成几组,每组称为一个batch,每个batch都包含着一批样本数据x及其对应的标记y。这指定了一个epoch内你的网络模型每一次吃进去的数据的数量。...就会返回一个历史对象,这个对象提供了训练过程中模型性能的各种信息的概览,包括损失函数的结果和编译模型时指定的任何其他指标。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。...在回归问题的情况下,这些预测结果可能就是问题的答案,由线性激活函数产生。 对于二分类问题,预测结果可能是该输入样本属于第一类的概率,这个概率可以通过舍入转换为1或0。

    3.1K90

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    其它可能的值是"sum"和None。 call()方法接受标签和预测值,计算所有实例的损失,并返回。 get_config()方法返回一个字典,将每个超参数映射到值上。...result()方法计算并返回最终值,在这个例子中,是返回所有实例的平均Huber损失。当你将指标用作函数时,update_state()方法先被调用,然后调用result()方法,最后返回输出。...当预测值的数量级不同时,指数层有时用在回归模型的输出层。 你可能猜到了,要创建自定义状态层(即,有权重的层),需要创建keras.layers.Layer类的子类。...另外,当你写的自定义损失函数、自定义指标、自定义层或任何其它自定义函数,并在Keras模型中使用的,Keras都自动将其转换成了TF函数,不用使用tf.function()。...什么时候需要创建一个动态Keras模型?怎么做?为什么不让所有模型都是动态的?

    5.3K30

    手把手教你用Keras进行多标签分类(附代码)

    谢谢你的帮助 Switaj提出了一个美妙的问题: Keras深度神经网络是否有可能返回多个预测? 如果可以,它是如何完成的? 基于Keras的多标签分类问题 本文将分为4个部分。...如你需要,你可以修改这段代码以返回更多的类标签。我也建议你对概率设置阈值,并且只返回那些置信程度 > N%的标签。 然后我们将对每一个输出图像准备类标签+相关的置信值。 ?...第44-48行的循环将可能性最大的两个多标签预测及相应的置信值绘制在输出图片上。 相似地,第51和第52行代码将所有的预测打印在终端上。这对于调试过程非常有用。...图片9:在该Keras深度学习多标签分类实验中,“牛仔裤”和“黑色”这两个标签都正确了。...请看底下的“总结”部分以获得更详尽的解释。 噢不——我们的分类器犯了个大错!我们的分类器报告说该模特身着黑色牛仔裤然而她实际穿着的黑色裙子。 在这里发生了什么? 为什么我们的多类预测出错了?

    19.9K120

    深度学习快速参考:1~5

    最后,我们介绍了本书其余部分将使用的留出验证方法,以及为什么对于大多数深度神经网络应用,我们都更喜欢 K 折 CV。 当我们在以后的章节中重新审视这些主题时,我们将大量参考本章。...我喜欢在创建所有回调的函数中执行此操作,以使事情精心制作和整理。 下面的create_callbacks()函数将返回我们将传递给.fit()的所有回调的列表。...当使用 Keras 时,对于n个样本中的每个,.predict()将返回k类概率的nxk矩阵。 对于二分类器,将只有一列,即类别 1 的类别概率。...缺点 和以前一样,更简单的模型可能会比深度学习模型做的更好或更好。 在所有其他条件都相同的情况下,您可能应该支持更简单的模型。 但是,随着类数的增加,深度神经网络复杂性的弊端通常会减少。...让我们讨论一下softmax是什么,以及为什么有用。 Softmax 激活 想象一下,如果不是使用深层神经网络,而是使用k个逻辑回归,其中每个回归都预测单个类中的成员。

    1K10

    Keras 中神经网络模型的 5 步生命周期

    作出预测。 ? Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。这些层的容器是 Sequential 类。...多类分类(> 2 类):多类对数损失或'_ 分类 _ 交响曲 _'。 您可以查看 Keras 支持的损失函数套件。...可以在训练数据上评估网络,但是这不会提供作为预测模型的网络表现的有用指示,因为它之前已经看到了所有这些数据。 我们可以在测试期间看不到的单独数据集上评估网络的表现。...这将提供对网络表现的估计,以便对未来看不见的数据进行预测。 该模型评估所有测试模式的损失,以及编译模型时指定的任何其他指标,如分类准确性。返回评估指标列表。...对于多类分类问题,结果可以是概率数组的形式(假设一个热编码输出变量),可能需要使用 argmax 函数将其转换为单个类输出预测。 端到端工作示例 让我们将所有这些与一个小例子结合起来。

    1.9K30
    领券