因此,在Python和R中都有大量的函数和工具可以帮助我们完成这项任务,这一点也不奇怪。 今天,我们将使用R并学习在R中转换数据时使用最广泛的一组“apply”函数。...这组函数提供了对数据的高效和快速操作。当我们只想处理某些列时,这特别有用。这组函数称为apply()函数。...这里, X是指我们将对其应用操作的数据集(在本例中是矩阵) MARGIN参数允许我们指定是按行还是按列应用操作 行边距=1 列边距=2 FUN指的是我们想要在X上“应用”的任何用户定义或内置函数 让我们看看计算每行平均数的简单示例...因此,mapply函数用于对通常不接受多个列表/向量作为参数的数据执行函数。当你要创建新列时,它也很有用。...因此,在处理数据帧时,mapply是一个非常方便的函数。 现在,让我们看看如何在实际数据集上使用这些函数。
Q: 深度学习中激活函数在不连续可导时的导数怎么处理呢? A: 激活函数不要求处处连续可导,在不连续可导处定义好该处的导数即可。 sigmoid函数是处处连续可导的。其他如ReLU,在0处不连续可导。...实际上激活函数用ReLU的情况很多。...---- 以caffe中的ReLU为例 在caffe中,给定输入x, ReLU层可以表述为: f(x) = x, if x>0; f(x) = negative_slope * x, if x 中bottom_data(即输入x)=0时,导数为negative_slope。...[relu_layer.cpp] ---- 常见激活函数和导数 不连续可导处的导数值取derivative(x+)还是derivative(x-),不同框架如pytorch, caffe, tensorflow
先看一下使用Delphi开发DLL时如何使用MAIN函数, 通常情况下并不会使用到DLL的MAIN函数,因为delphi的框架已经把Main函数隐藏起来 而工程函数的 begin end 默认就是MAIN...以上都是题外话,本文主要说明在DLL入口函数里面创建和退出线程为什么卡死和如何解决的问题。...1)在 DLL_PROCESS_ATTACH 事件中 创建线程 出现卡死的问题 通常情况下在这事件中仅仅是创建并唤醒线程,是不会卡死的,但如果同时有等待线程正式执行的代码,则会卡死,因为在该事件中...实际上如果是通过LoadLibrary加载DLL,则会在LoadLibrary结束前后的某一时刻正式执行)。...解决办法同样是避免在 DLL_PROCESS_DETACH事件中结束线程,那么我们可以在该事件中,创建并唤醒另外一个线程,在该新的线程里,结束需要结束的线程,并在完成后结束自身即可。
隐式循环 在单细胞分析中,我们读取多个单细胞数据集时通常会用到lapply()函数,循环读取多个数据集 比如在技能树最近如何整合多个单细胞数据集推文中,就多次用到了lapply()函数 dir='GSE152938...apply()函数 apply()一般用于处理矩阵/数据框,返回通过将函数应用于数组或矩阵的边距而获得的向量或数组或值列表。...[,1:4], 2, plot) lapply()函数 lapply返回与X长度相同的列表,其中的每个元素都是将FUN应用于X的相应元素的结果。...lapply是apply()函数的变种,主要用于处理列表/向量(列表/向量没有行和列的概念,所以会比对矩阵/数据框的操作更简单一些),也更适用于批量读取数据或者处理统计数据 基本语法为: lapply(...写函数的函数——function() 使用apply或者lapply函数时,都有FUN参数,就是我们在执行循环时需要用的函数,这个函数可以是内置的比如mean或者sum等函数,也可以由我们自己构建 如果需要写对应需求的函数
) SparkR 还提供了一些可以直接应用于列进行数据处理和 aggregatation(聚合)的函数....应用于 SparkDataFrame 每个 partition(分区)的 function(函数)应该只有一个参数, 它中的 data.frame 对应传递的每个分区.... 分发运行一个本地的 R 函数 spark.lapply 类似于本地 R 中的 lapply, spark.lapply 在元素列表中运行一个函数,并使用 Spark 分发计算....以类似于 doParallel 或 lapply 的方式应用于列表的元素. 所有计算的结果应该放在一台机器上....dplyr软件包上建模的,因此SparkR中的某些函数与dplyr中同名.
pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...列顺序:在创建 DataFrame 时,pandas 会检查所有字典中出现的键,并根据这些键首次出现的顺序来确定列的顺序。...缺失值处理:如果某些字典缺少某些键,则相应地,在结果 DataFrame 中该位置将被填充为 NaN(Not a Number),表示缺失值。...在个别字典中缺少某些键对应的值,在生成的 DataFrame 中该位置被填补为 NaN。...总而言之,pandas 在处理通过列表字典创建 DataFrame 时各个字典键顺序不同以及部分字典缺失某些键时显示出了极高的灵活性和容错能力。
3.Lapply函数也不支持多种统计方法,因此也要用两句代码分别实现sum和max算法,最后再用cbind拼合。另外,本算法还要额外用到split函数,因此在易用性上没有改进,反而是更差了。...可以看到,计算结果中的第一列实际上是“SELLERID.CLIENT”,我们需要把它拆分成两列并调换顺序才行。...3、Lapply 是 apply 函数族 Lapply 是 apply 函数族的一份子,类似的函数还有 sapply 和 tapply。...tapply 只对单字段分组适用,在进行双字段联合分组时其结果为二维矩阵,用户还需要进行复杂的处理才行,比如 tapply(orders$AMOUNT, orders[,c("SELLERID","CLIENT...data.table包的语法简洁,并且只需一行代码就可以完成很多事情。进一步地,data.table在某些情况下执行效率更高。
也就是说,向量的所有元素必须属于同种模式(mode),或数据类型(见1.2),比如数值型,字符型等。其类型可以用typeof()查看。 标量只含有一个元素,在R中没有0维度或标量类型。...4.2对矩阵的行和列调用函数 apply函数(在矩阵的各行和格列上调用制定的函数) apply(m,dimcode,f,fargs) m为矩阵 dimcode为维度编号,1代表对每一行应用函数,2...还有合并 apply族函数在数据框中的用法 apply lapply sapply apply 如果数据框的每一列的数据类型相同,则可以对该数据框使用apply函数。或针对数据框中的某些列应用。...lapply和sapply 因为数据框技术上就是列表,所以lapply和sapply可以应用于数据框。...数据框是列表的特例,数据框的列构成列表的组件,所以lapply函数会作用于数据框的每一列,返回返回一个列表。但未知错乱,意义不大。
一 索引自身出问题 1) 索引本身失效 2) 没有查询条件,或者查询条件没有建立索引 3) 在查询条件上没有使用引导列 4) 对小表查询 5) 查询的数量是大表中的大部分数据。...二 受查询条件的影响 5) 对列使用函数,该列的索引将不起作用。 如:substring(字段名,1,2)='xxx'; 6) 对列进行运算(+,-,*,/,!...如:select * from test where id-1=9;//错误的写法 select * from test where id=10; //正确的写法 7) 某些情况下的LIKE操作,该列的索引将不起作用...如:字段名 LIKE CONCAT('%', '2014 - 08 - 13', '%') 8)某些情况使用反向操作,该列的索引将不起作用。 ...如:字段名 2 9)在WHERE中使用OR时,有一个列没有索引,那么其它列的索引将不起作用 10)隐式转换导致索引失效.这一点应当引起重视.也是开发中经常会犯的错误.
但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是使用者玩不转一类核心函数。...apply函数可以对矩阵、数据框、数组(二维、多维),按行或列进行循环计算,对子元素进行迭代,并把子元素以参数传递的形式给自定义的FUN函数中,并以返回计算结果。...参数列表: X:list、data.frame数据 FUN: 自定义的调用函数 …: 更多参数,可选 比如,计算list中的每个KEY对应该的数据的分位数。...会分别循环矩阵中的每个值,而不是按行或按列进行分组计算。...如果对数据框的列求和。 > lapply(data.frame(x), sum) $x1 [1] 12 $x2 [1] 12 lapply会自动把数据框按列进行分组,再进行计算。
❝apply 家族是 R 语言中常用的函数,用于对列表、数组或其他类型的数据进行循环操作。 ❞ apply 家族包括以下几个函数: ❝lapply:用于遍历列表中的每一个元素,并对其执行函数操作。...使用 lapply 函数对列表中的每个字符串执行 toupper 函数 lapply(x, toupper) [[1]] [1] "APPLE" [[2]] [1] "BANANA" [[3]]...例如,下面的代码使用 apply 函数求出矩阵中每一列的和: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的和 apply(x, 2,...sum) [1] 6 15 24 ❝上面介绍了apply 家族函数的原理,下面来举几个使用 apply 家族函数处理数据的小例子: ❞ 例子 1:求出矩阵中每一列的最大值 下面的代码使用 apply...函数求出矩阵中每一列的最大值: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的最大值 apply(x, 2, max) [1] 3
概述 在实际的工作中,我们总要面对各种各样的数据结构处理,这些操作可以使用循环来完成,但是容易造成内存的占用,以前其实了解过这方面的函数,但是记不清,因此整理下 主要函数如下 apply lapply...X 处理的数据框 MARGIN 1表示对行,2表示对列处理,c(1,2)表示对行列进行操作 FUN 函数,可以为自定义函数,或者为内置函数 示例 # 使用iris数据集进行测试 data(iris) #...函数 lapply函数和apply函数的差别在于,lapply输出的为一个列表 参数方面少了margin 示例 xlapply(iris[,1:4],mean,na.rm=T) # 因为输出的为list...tapply函数一般对数据进行分组描述时使用 tapply(X, INDEX, FUN = NULL) 参数 -X: 一个对象,一般都是向量 -INDEX: 一个包含分类因子的列表 -FUN: 对X里面每个元素进行操作的函数...示例 data(iris) # 对第一列进行分组求均值 tapply(iris[,1],iris$Species,mean) # 结果 setosa versicolor virginica
函数名 功能 特点 apply 按行、列运算均值、求和、众数等 简单运算 tapply=table apply 在apply之上加入table功能,可以分组汇总 table结合,可以分组汇总 lapply...lapply与函数sapply 每一列数据采用同一种函数形式,比如求X变量得分位数,比如求X变量的循环函数。...lapply的使用格式为: lapply(X, FUN, ...) lapply的返回值是和一个和X有相同的长度的list对象, 这个list对象中的每个元素是将函数FUN应用到X的每一个元素。...在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容, 以使他们具有相同的长度和类型。...lapply中所要使用的函数,一定需要是输入为单一变量,输出为单一变量可以存至list中。
其格式是: Apply(数据,维度Index,运算函数,函数的参数) 对于Matrix来说,其维度值为2,第二个参数维度Index中,1表示按行运算,2表示按列运算。...Lapply 前面说到apply是对于matrix和array的,针对list,我们可以使用lapply函数。该函数接收list,返回的结果也是一个list。...Sapply Sapply函数和Lapply函数很类似,也是对List进行处理,只是在返回结果上,Sapply会根据结果的数据类型和结构,重新构建一个合理的数据类型返回。...USE.NAMES是对字符串数据处理时,是否使用字符串作为命名的。...Tapply 前面介绍的几个apply函数都是对整体数据进行处理,而tapply是对向量中的数据进行分组处理。
将第一个参数(学徒信息)按照第二个参数(性别)进行分组,然后每组应用第三个参数所定义的函数(求每组第三列即年龄的平均值)。 还没懂?没关系,来个示意图: ?...熟悉split()函数的可以看出,按照gender列分组那步,split()函数可以到达同样的效果:split(biotrainee,biotrainee$gender) > split(biotrainee...25.33333 $male [1] 24.5 lapply()中的 “l” 代表list,它接受list作为输入,并将指定的操作应用于列表中的所有元素。...到这里by()函数的用法就讲完了,只讲基本用法,不讲在实际数据分析过程中能解决什么问题?...第三个参数是我们自己定义的函数:计算每个小矩阵中每行探针表达量的平均值(也就是每个探针在6个样本中表达量的均值rowMeans(x)),再取平均值最大的那个探针作为该symbol所对应的唯一探针which.max
但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是初学者玩不转的一类核心函数。...apply函数可以对矩阵、数据框、数组(二维、多维),按行或列进行循环计算,对子元素进行迭代,并把子元素以参数传递的形式给自定义的FUN函数中,并返回计算结果。...MARGIN:表示对行(1)或者是对列(2)应用函数。 FUN: 可是R自带函数,如mean,sum等。也可以是自己编写的函数。 ... :FUN中的额外参数。...lapply就不能达到想要的效果了,lapply会分别循环矩阵中的每个值,而不是按行或按列进行分组计算。...eapply函数平时很难被用到,但对于R包开发来说,环境空间的使用是必须要掌握的。特别是当R要做为工业化的工具时,对变量的精确控制和管理是非常必要的。
具体步骤如下:apply(marker_cosg$names, 2, head, 100) 应用于 marker_cosg$names 的每一列,提取前 100 个基因符号。2 表示沿着列操作。...函数时往往加一个参数only.pos = TRUE,意为仅返回在给定簇中表达上调(正向表达)的基因,而不包括在其他簇中下调的基因。...最后sce$stim中存储了分组的信息,在meta.data中新增group一列,存储sce$stim信息,主要是为了方便后续的操作。...unique()函数会返回所有不同的细胞类型,即去重后的细胞类型列表。lapply() :是R中的一个循环函数,作用是对列表中的每个元素应用同一个函数,并返回一个列表。...lapply(degs, function(x){ ... }):对degs列表中的每一个元素(即每种细胞类型的差异表达结果)应用一个匿名函数。
在之前R语言基础教程——第3章:数据结构——向量中我们介绍过向量的加减乘除运算,在这里介绍一下>,<运算。...7 12 17 [3,] 3 8 13 18 [4,] 4 9 14 19 [5,] 5 10 15 20 > 3 NA和NULL值 在我们获取的实验数据中...而之前通过索引获取时NA值不会被忽略。...,运用f函数以后发现变成了一个4行5列的矩阵,这是apply函数的默认方式,可用转置函数t()进行转换。...INDICES是一个因子或一组因子,每个因子的长度为nrow(数据)。 FUN是要应用于(通常是数据框)data子集的函数。
写在前面 本期依然由村长为大家供稿,只为填上一期最后挖的坑,话不多说进入正题。 问题提出 在上一期中,还记得我们留下的那个彩蛋吗?...我们在对多列标准进行筛选时,在之前我们还进行了一步非常重要的提取,也就是将每一列观察值提取出某一特定的字段,而后生成一系列变量,这些变量的观测值只可能存在三种情况:醛固酮、继发性醛固酮或者NA。...经过这样的处理我们才能进行上一期公众号所讲述的下一步:以多列标准进行筛选的操作。...在这里通过链接中的推送的lapply使用原理,再加上stringr包中str_match这个函数的使用,截取出诊断结果中出现过的继发性醛固酮或者醛固酮,没有出现过的自动记为NA。...:=’ 左边格式的问题: ':=' 左边的格式应该是一个向量,一个带有需要被处理变量的字符格式的向量,这一点从colnames这个函数的使用可以得知。
= eSet[[1]] 这句代码是用来提取 eSet 数据框中的第一列数据。...这个函数通常与setNames()函数一起使用,后者为数据框的列设置名称。#phenoData的全称是表型数据。在生物信息学中,它通常指的是描述样本信息的临床数据,如年龄、性别、治疗手段等。...row.names 参数设置为 1,您可以指定数据框中的第一列作为行名。...#在R语言中,若要把fun应用到x的每一列,margin参数应该设置为1。...#1,函数会应用于矩阵的每一列(即,横向)。 #2,函数会应用于矩阵的每一行(即,纵向)。
领取专属 10元无门槛券
手把手带您无忧上云