首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

libvips最近邻/双三次深度缩放金字塔创建

libvips是一个开源的图像处理库,它提供了高效、快速的图像处理功能。最近邻/双三次深度缩放金字塔创建是libvips库中的一个功能,用于对图像进行缩放操作。

最近邻缩放是一种简单的缩放算法,它通过选择最接近目标像素的原始像素来进行缩放。这种算法的优势是速度快,但可能会导致图像边缘的锯齿状效果。

双三次深度缩放是一种更高质量的缩放算法,它通过对目标像素周围的原始像素进行加权平均来计算新像素的值。这种算法可以产生更平滑的缩放效果,但相对于最近邻缩放而言,计算量较大,速度较慢。

金字塔创建是libvips库中的一个功能,它可以根据原始图像创建一个多层次的图像金字塔。图像金字塔是一种数据结构,它包含了原始图像的多个不同分辨率的版本。通过使用图像金字塔,可以在不同的缩放级别上进行快速的图像处理操作,从而提高处理效率。

libvips库的应用场景非常广泛,包括但不限于图像处理、图像缩放、图像裁剪、图像转换、图像合成等。它可以用于各种领域,如互联网应用、移动应用、媒体处理、人工智能等。

腾讯云提供了一系列与图像处理相关的产品,其中包括云图像处理(Cloud Image Processing,CIP)服务。CIP提供了丰富的图像处理功能,可以满足各种图像处理需求。您可以通过以下链接了解更多关于腾讯云图像处理服务的信息:腾讯云图像处理(CIP)

总结:libvips是一个开源的图像处理库,最近邻/双三次深度缩放金字塔创建是其提供的一种图像缩放功能。它可以应用于各种图像处理场景,并且腾讯云提供了与图像处理相关的产品,如云图像处理服务,可以满足各种图像处理需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing

在这篇文章中,我们提出了一个端到端的网络,称为Cycle-Dehaze,为单一图像去雾问题,它配对的有雾图像和其对应的图像进行训练。也就是说,我们通过以不成对的方式加入干净和模糊的图像来训练网络。此外,所提出的方法不依赖于大气散射模型参数的估计。我们的方法通过结合循环一致性和感知损失来增强CycleGAN方法,以提高纹理信息恢复的质量,并生成视觉上更好的无雾霾图像。典型地,用于去雾的深度学习模型将低分辨率图像作为输入并产生低分辨率输出。然而,在NTIRE 2018单幅图像去雾挑战中,提供了高分辨率图像。因此,我们应用双三次降尺度。从网络获得低分辨率输出后,我们利用拉普拉斯金字塔将输出图像提升到原始分辨率。我们在NYU-Depth、, I-HAZE, and O-HAZE数据集上进行了实验。大量实验表明,该方法从定量和定性两个方面改进了CycleGAN方法。

02

A full data augmentation pipeline for small object detection based on GAN

小物体(即32×32像素以下的物体)的物体检测精度落后于大物体。为了解决这个问题,我们设计了创新的体系结构,并发布了新的数据集。尽管如此,许多数据集中的小目标数量不足以进行训练。生成对抗性网络(GAN)的出现为训练体系结构开辟了一种新的数据增强可能性,而无需为小目标注释巨大数据集这一昂贵的任务。 在本文中,我们提出了一种用于小目标检测的数据增强的完整流程,该流程将基于GAN的目标生成器与目标分割、图像修复和图像混合技术相结合,以实现高质量的合成数据。我们的流水线的主要组件是DS-GAN,这是一种基于GAN的新型架构,可以从较大的对象生成逼真的小对象。实验结果表明,我们的整体数据增强方法将最先进模型的性能提高了11.9%AP@。在UAVDT上5 s和4.7%AP@。iSAID上的5s,无论是对于小目标子集还是对于训练实例数量有限的场景。

02

cvpr目标检测_目标检测指标

Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper , we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

04

Feature Pyramid Networks for Object Detection

特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

02

目标检测 | 解决小目标检测!多尺度方法汇总

最开始在深度学习方法流行之前,对于不同尺度的目标,大家普遍使用将原图构建出不同分辨率的图像金字塔,再对每层金字塔用固定输入分辨率的分类器在该层滑动来检测目标,以求在金字塔底部检测出小目标;或者只用一个原图,在原图上,用不同分辨率的分类器来检测目标,以求在比较小的窗口分类器中检测到小目标。经典的基于简单矩形特征(Haar)+级联Adaboost与Hog特征+SVM的DPM目标识别框架,均使用图像金字塔的方式处理多尺度目标,早期的CNN目标识别框架同样采用该方式,但对图像金字塔中的每一层分别进行CNN提取特征,耗时与内存消耗均无法满足需求。但该方式毫无疑问仍然是最优的。值得一提的是,其实目前大多数深度学习算法提交结果进行排名的时候,大多使用多尺度测试。同时类似于SNIP使用多尺度训练,均是图像金字塔的多尺度处理。

03

SPPNet(2015)

RCNN首次将卷积操作引入检测领域用于提取特征,然而现有的深度卷积网络需要输入固定尺寸的图片,这个需求可能会导致对于任意scale/size的图片的识别精确度下降。【深度卷积神经网络由卷积层和全连接层组成,卷积层对于任意大小的图片都可以进行卷积运算提取特征,输出任意大小的特征映射,而全连接层由于本身的性质需要输入固定大小的特征尺度,所以固定尺寸的需求来自于FC层,即使对输入图片进行裁剪、扭曲等变换,调整到统一的size,也会导致原图有不同程度失真、识别精度受到影响】SPPNet提出了**“空间金字塔池化”**消除这种需求,不管图像大小是多大,在整张图片上只需要计算一次,就可以得到整幅图像的特征图,经过池化都会输出一个固定长度的表征。

02

『人脸识别系列教程』0·MTCNN讲解

背景介绍: 人脸检测,解决两个问题:1)识别图片中有没有人脸?2)如果有,人脸在哪?因此,许多人脸应用(人脸识别、面向分析)的基础是人脸检测。 大多数人脸检测采用的流程为两阶段: 1) 找出所有可能是人脸的候选区域 2) 从候选区域中选择出最可能是人脸的区域 本文的主角MTCNN,大致是这种套路,也集成了其优缺点为:准和慢。 MTCNN人脸检测是2016年的论文提出来的,MTCNN的“MT”是指多任务学习(Multi-Task),在同一个任务中同时学习”识别人脸“、”边框回归“、”人脸关键点识别“。相比2015年的CVPR(边框调整和识别人脸分开做)的结构,MTCNN是有创新的。 从工程实践上,MTCNN是一种检测速度和准确率都还不错的算法,算法的推断流程有一定的启发性,在这里给大家分享。(以下用“MTCNN”代指这个算法)本文以Q&A的方式,与你分享一些经验和思考。先列出本文会回答的问题列表:

02

ORB 特征

ORB 是 Oriented Fast and Rotated Brief 的简称,可以用来对图像中的关键点快速创建特征向量,这些特征向量可以用来识别图像中的对象。 其中,Fast 和 Brief 分别是特征检测算法和向量创建算法。ORB 首先会从图像中查找特殊区域,称为关键点。关键点即图像中突出的小区域,比如角点,比如它们具有像素值急剧的从浅色变为深色的特征。然后 ORB 会为每个关键点计算相应的特征向量。ORB 算法创建的特征向量只包含 1 和 0,称为二元特征向量。1 和 0 的顺序会根据特定关键点和其周围的像素区域而变化。该向量表示关键点周围的强度模式,因此多个特征向量可以用来识别更大的区域,甚至图像中的特定对象。 ORB 的特点是速度超快,而且在一定程度上不受噪点和图像变换的影响,例如旋转和缩放变换等。

01

SPPNet总结

RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段。但是在RCNN中,因为全连接层的神经元个数是固定的(权重矩阵的维数是固定的),所以采取对于每一个区域候选都需要首先将图片放缩到固定尺寸(227×227),然后为每个区域候选提取CNN特征的方案。这里存在两个瓶颈,第一重复为每个region proposal提取特征是及其费时的,Selective Search对于每幅图片产生2k左右个region proposal,也就是意味着一幅图片需要经过2k次完整的CNN计算得到最终的结果。第二对于所有的region proposal放缩到固定尺寸会导致我们不期望看到的几何形变,而且由于速度瓶颈的存在,不可能采用多尺度或者是大量的数据增强去训练模型,这就导致它的性能必然较差。

02

经典/深度SfM有关问题的整理[通俗易懂]

这篇博客主要是记录一些实践或看论文过程中遇到的一些不好理解的问题及解释。 Q1:SfM里的尺度不变性指的是什么? A1:一般定义下,尺度不变性是指体系经过尺度变换后,其某一特性不变。比如,特征点检测算法SIFT,其检测到的特征点的尺度不变性是通过图像金字塔来实现的。这样,不管原图的尺度是多少,在包含了所有尺度的尺度空间下都能找到那些稳定的极值点,这样就做到了尺度不变。关于SIFT尺度不变性的更详细讲解,可以参考这篇博客。 Q2:单目相机SfM重建结果的尺度是怎么确定的? A2:传统方法中,单目重建是无法获取重建场景的尺度信息的。因此,要确定重建的尺度,需要使用额外的手段。比如:

02
领券