首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

英伟达CUDA架构核心概念及入门示例

理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。

01

Java volatile修饰符的用法及作用详解版

1、               内存访问操作/指令执行操作的乱序:假设每个CPU都分别运行着一个会触发内存访问操作的程序。那么对于这样一个CPU,其内存访问顺序是非常松散的,在保证程序上下文逻辑关系的前提下,CPU可能乱序执行内存操作。此外,编译器也可以将它输出的指令安排成任何它喜欢的顺序,只要保证不影响程序表面的执行逻辑。这里就涉及到了两次可能发生指令重排的情况:一个是编译的时候,由编译原理的知识知道,编译器会对代码进行优化,这一步就涉及到指令重排,当然,编译完成之后的目标代码中指令的顺序就是确定的,不同线程执行该代码的顺序是一样的;另一个就是CPU在执行具体的指令的时候,也会因为计算机当前的状态(比如寄存器的占用情况、ALU的使用情况,cup缓存层的存在等原因)的不同导致指令最终的执行顺序发生变化(实际上,cpu本身并不会对指令进行重排,它本身是按照编译后的顺序来执行指令的,只是由于执行不同的指令需要的时间长短不同,以及缓存层的存在,再加上CPU执行指令的流水线并不是串行化等因素,那么就有可能出现排在靠前位置的指令还没执行完,而排在靠后的指令已经执行完了的情况,这一情况就是所谓的CPU执行指令的乱序,具体原因后面会更详细地解释),尽管这个变化可能不影响最终结果的正确性。

03
领券