首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

英伟达CUDA架构核心概念及入门示例

理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。

01

神经网络处理单元NPU技术介绍及开发要求

神经网络处理单元(NPU)是一种创新的计算硬件,专为加速神经网络计算而设计。它摒弃了传统冯诺依曼架构的限制,转而采用“数据驱动并行计算”的方式,模拟人类神经元和突触的工作模式,以实现对数据的高效处理。NPU的架构允许其同时处理大量数据流,这使得它在处理视频、图像以及其他多媒体数据时展现出卓越的性能。与CPU和GPU相比,NPU通过优化的硬件结构和高并行度,实现了深度学习任务的加速,同时降低了功耗,使之成为移动设备、自动驾驶、医疗影像分析等领域AI技术实现的关键推手。NPU的高效能和低能耗特性,让人工智能技术得以在各种设备上实现实时处理,为用户提供了更快速、更智能的交互体验。

01

Hadoop学习笔记—1.基本介绍与环境配置

说到Hadoop的起源,不得不说到一个传奇的IT公司—全球IT技术的引领者Google。Google(自称)为云计算概念的提出者,在自身多年的搜索引擎业务中构建了突破性的GFS(Google File System),从此文件系统进入分布式时代。除此之外,Google在GFS上如何快速分析和处理数据方面开创了MapReduce并行计算框架,让以往的高端服务器计算变为廉价的x86集群计算,也让许多互联网公司能够从IOE(IBM小型机、Oracle数据库以及EMC存储)中解脱出来,例如:淘宝早就开始了去IOE化的道路。然而,Google之所以伟大就在于独享技术不如共享技术,在2002-2004年间以三大论文的发布向世界推送了其云计算的核心组成部分GFS、MapReduce以及BigTable。Google虽然没有将其核心技术开源,但是这三篇论文已经向开源社区的大牛们指明了方向,一位大牛:Doug Cutting使用Java语言对Google的云计算核心技术(主要是GFS和MapReduce)做了开源的实现。后来,Apache基金会整合Doug Cutting以及其他IT公司(如Facebook等)的贡献成果,开发并推出了Hadoop生态系统。Hadoop是一个搭建在廉价PC上的分布式集群系统架构,它具有高可用性、高容错性和高可扩展性等优点。由于它提供了一个开放式的平台,用户可以在完全不了解底层实现细节的情形下,开发适合自身应用的分布式程序。

01

python并行计算之mpi4py的安装与基本使用

在之前的博客中我们介绍过concurrent等python多进程任务的方案,而之所以我们又在考虑MPI等方案来实现python并行计算的原因,其实是将python的计算任务与并行计算的任务调度分层实现。在concurrent和multiprocessing等方案中,我们的python计算任务和调度任务是一体化的,而且还有一个比较大的限制是没办法跨节点操作的,这对于任务与环境的定制化程度要求是比较高的。而MPI的方案在设计初期就考虑到了多节点之间通信的问题,而这种分层式的任务调度解决方案其实在架构上看也更加的合理。做计算的人只要考虑单个进程下的任务如何执行就可以了,至于任务如何并行如何调度,那就是上层的MPI该做的事情了。

01

扫码

添加站长 进交流群

领取专属 10元无门槛券

手把手带您无忧上云

扫码加入开发者社群

相关资讯

热门标签

活动推荐

    运营活动

    活动名称
    广告关闭
    领券