首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

RXTX for JAVA 串口通信

RXTX 的下载可以到官网或者Fizzed,官网发现并没有64位的支持,但是在Fizzed中找到的2.2版的64,32的windows和Linux版本http://fizzed.com/oss/rxtx-for-java 1.windows下的串口调试 将rxtxParallel.dll、rxtxSerial.dll拷贝到%JAVA_HOME%安装目录bin目录下 将rxtxParallel.dll、rxtxSerial.dll拷贝到%JAVA_HOME%安装目录jre/bin目录下(eclipse开发时调用,减少麻烦) 将RXTXcomm.jar 拷贝到%JAVA_HOME%\jre\lib\ext\RXTXcomm.jar(开发时直接导入) 2.Linux下的串口调试 首先确定Linux处理器型号,对应选择RXTX的Linux版本。 如处理器为i386,则将Linux i686版本中的两个os文件复制到系统%JAVA_HOME%/jre/lib/i386(即JDK目录中的系统文件夹) 将RXTXcomm.jar拷贝到%JAVA_HOME%/jre/lib/ext文件夹 代码不变,即可运行使用。 在实际开发中,由于使用树莓派测试,树莓派使用Raspbian系统(使用uname -a命令可查看系统内核信息) Linux raspberrypi 3.12.28+ #709 PREEMPT Mon Sep 8 15:28:00 BST 2014 armv6l GNU/Linux 处理器型号armv6l,在下载的RXTX工具包中并无此种系统版本,在实际测试中,所找到的RXTX工具包也都不能使程序运行,均报出系统位数不符。

03
您找到你想要的搜索结果了吗?
是的
没有找到

基于OrangePi AIpro开发一个电子纸屏时钟

OrangePi AIpro(8T)采用昇腾AI技术路线,具体为4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求。

01

两分钟了解:NTP网络时间服务器 技术架构

对于控制系统的时间准确度有严格要求。为此,采用搭建高精度NTP服务器的方法实现系统校时。基本思路是从NMEA018 3数据中提取时间信息,通过PPS信号来保证高精度。具体实现方法是采用GPS接收模块G591来构造硬件电路,软件部分需要NTP服务器软件和GPS的正确安装和配置。对照实验表明,基于GPS的NTP服务器校时精度可以达到微秒量级,工作性能稳定而可靠。 引言 准确的时间是天文观测所必需的。天文望远镜在特定时间内的准确指向、CCD曝光时间的控制以及不同波段观测数据所进行的高精度同步比对等应用需要系统至少有亚毫秒的时间准确度。然而就目前来看,一般的计算机和嵌入式设备所使用的晶体振荡器的精度为几个或者几十个ppm(百万分之一秒),并且会受温度漂移的影响,使得每天的误差能够达到秒级,若再考虑元器件的老化或外界干扰等因素,误差可能会超过10 s,如果不及时校正,其误差积累将不可忽视。 网络时间协议NTP(Network Time Protocol)是美国特拉华大学的MILLS David L.教授在1982年提出的,其设计目的是利用互联网资源传递统一和标准的时间。目前,使用GPS信号实现校时的研究工作很多,大多只是通过读取GPS模块解码出的串行数据,提取其中的时间信息来纠正系统时钟,该过程并不涉及NTP的使用,精度较低,一般为几十到几百毫秒。对此,本文充分利用了NTP服务器软件对GPS时钟源的支持,采用串行数据和秒脉冲相结合的方式来校准时间,校时精度大为提高。

01

张高兴的 .NET IoT 入门指南:(八)基于 GPS 的 NTP 时间同步服务器

时间究竟是什么?这既可以是一个哲学问题,也可以是一个物理问题。古人对太阳进行观测,利用太阳的投影发明了日晷,定义了最初的时间。随着科技的发展,天文观测的精度也越来越准确,人们发现地球的自转并不是完全一致的,这就导致每天经过的时间是不一样的。这点误差对于基本生活基本没有影响,但是对于股票交易、火箭发射等等要求高精度时间的场景就无法忍受了。科学家们开始把观测转移到了微观世界,找到了一种运动高度稳定的原子——铯,最终定义出了准确的时间:铯原子电子跃迁 9192631770 个周期所持续的时间长度定义为 1 秒。基于这个定义制造出了高度稳定的原子钟。

02
领券