有时我们需要在 Linux 内核中预留一部分内存空间用作特殊用途(给安全模块使用,给其它处理器使用,或是给特定的驱动程序使用等),在 Device Tree 中有提供两种方法对预留内存进行配置:memreserve 和 reserved-memory。
我们知道linux系统内核的主要工作之一是管理系统中安装的物理内存,系统中内存是以page页为单位进行分配,每个page页的大小是4K,如果我们需要申请使用内存则内核的分配流程是这样的,首先内核会为元数据分配内存存储空间,然后才分配实际的物理内存页,再分配对应的虚拟地址空间和更新页表。
free命令用于显示系统内存使用情况,包括物理内存(Physical Memory)、虚拟内存(Swap Memory)、共享内存(Shared Memory)以及内核使用的缓冲(Buffers)与缓存(Cached)大小。在Linux系统监控的工具中,free命令是最经常使用的命令之一。
最近因为搭建scutosc的论坛,买了一台新的腾讯云的2核4G的服务器,但是开机后发现htop命令显示内存只有3.3G:
网络 cat >> /etc/sysctl.conf << EOF kernel.msgmnb = 65536 kernel.msgmax = 65536 kernel.shmmax = 68719476736 kernel.shmall = 4294967296 net.ipv4.tcp_max_tw_buckets = 6000 net.ipv4.tcp_fin_timeout = 30 net.ipv4.tcp_rmem = 4096 87380 4194304 net.ipv4.tcp_wmem
我们知道外设访问内存需要通过DMA进行数据搬移,关于cpu, cache, device, dma, memory的关系可以通过下图说明:
最近gitlab服务会偶发性500,当前机器部署了gitlab、nfs等服务,经过排查发现是nfsd引发oom,导致系统运行不畅。处理过程如下:
Kubernetes 的节点可以按照节点的资源容量进行调度,默认情况下 Pod 能够使用节点全部可用容量。这样就会造成一个问题,因为节点自己通常运行了不少驱动 OS 和 Kubernetes 的系统守护进程。除非为这些系统守护进程留出资源,否则它们将与 Pod 争夺资源并导致节点资源短缺问题。
内存管理是操作系统内核中最复杂的部分之一, start_kernel函数在内核启动第一个init进程前初始化了所有的内核特性(包括那些依赖于不同架构的特性),你也许还记得引导时创立的临时页表,但复杂的内存管理部分还没有开始,当start_kernel函数被调用时,我们会看到初期内存管理到更复杂的内存管理数据结构和技术的转变,为了更好的理解内核的初始化过程,我们需要对这些技术有更清晰的理解,今天我们会着重讨论这个过程,主要针对初期的内存管理memblock的介绍。
解释已经很清楚了,主要有以下几个关键点: 1. 1 代表系统所保留空闲内存的最低限
版权声明:本文为耕耘实录原创文章,各大自媒体平台同步更新。欢迎转载,转载请注明出处,谢谢
对于用户空间的应用程序,我们通常根本不关心page的物理存放位置,因为我们用的是虚拟地址。所以,只要虚拟地址不变,哪怕这个页在物理上从DDR的这里飞到DDR的那里,用户都基本不感知。那么,为什么要写一篇论述页迁移的文章呢?
经过茫茫长时间的编写+过年在家无聊补充和修正单元测试,再加上这两天的整理,终于把以前的这个关于服务器通信中间件的基本功能和相应的单元测试完成啦。还是可以热烈庆祝一下的。
v85x 平台包括了 V853, V853s, V851s, V851se。 s后缀代表芯片内封了DDR内存,e后缀代表芯片内封 ephy。拥有 Cortex-A7 core@900MHz, RISC-V@600MHz 和一个 0.5TOPS(VIP9000PICO_PID0XEE, 567MACS, 576 x 348M x 2 ≈ 500GOPS) 的 NPU。其中的 RISC-V 小核心为 平头哥玄铁E907
出处:http://blog.csdn.net/lijun538/article/details/52549159
对 Linux 稍有了解的人都知道,Linux 会将物理的随机读取内存(Random Access Memory、RAM)按页分割成 4KB 大小的内存块,而今天要介绍的 Swapping 机制就与内存息息相关,它是操作系统将物理内存页中的内容拷贝到硬盘上交换空间(Swap Space)以释放内存的过程,物理内存和硬盘上的交换分区组成了操作系统上可用的虚拟内存,而这些交换空间都是系统管理员预先配置好的[^1]。
(需要安装dm的光驱文件dm8_20200907_x86_rh6_64_ent_8.1.1.126.iso)
有了前两节的学习相信读者已经知道CPU所有的操作都是建立在虚拟地址上处理(这里的虚拟地址分为内核态虚拟地址和用户态虚拟地址),CPU看到的内存管理都是对page的管理,接下来我们看一下用来管理page的经典算法--Buddy。
爱可生 DBA 团队成员,负责项目日常问题处理及公司平台问题排查。热爱 IT,喜欢在互联网里畅游,擅长摄影、厨艺,不会厨艺的 DBA 不是好司机,didi~
有了前两节的学习相信读者已经知道CPU所有的操作都是建立在虚拟地址上处理(这里的虚拟地址分为内核态虚拟地址和用户态虚拟地址),CPU看到的内存管理都是对page的管理,接下来我们看一下用来管理page
在 NodeManager 中有一个Monitor线程,用于一直监控NodeManager的内存使用量,假设NodeManager 设置为3G,用于后面的资源(如 Kafka、Flume)的内存为1G;
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。
随着业务容器化的推进,经常有客户抱怨应用 QPS 无法和在物理机或者云主机上媲美,并且时常会出现 DNS 查询超时、短连接 TIME_OUT、网络丢包等问题,而在容器中进行调优与诊断的效果因为安装工具的复杂度大打折扣。本文基于网易轻舟中间件业务容器化实践,总结容器场景下的性能调优心得,供读者参考。
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁转载
前言 记得第一次接触/etc/security/limits.conf和/etc/sysctl.conf时 是因为部署Oracle时要按需修改内核参数。limits.conf文件实际是Linux PA
BootLoader的目标是正确调用内核的执行,由于大部分的BootLoader都依赖于CPU的体系结构。因此大部分的BootLoader都分为两个步骤启动。依赖于CPU体系结构(如设备初始化等)的代码都放在stage1。而stage2一般使用C语言实现,能够实现更加复杂的功能,代码的可移植性也提高。
浪尖整理翻译https://databricks.com/blog/2016/08/31/apache-spark-scale-a-60-tb-production-use-case.html。
页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信息, 分段的目的是为了更好地实现共享, 满足用户的需要.
在虚拟化环境中的迁移,又分为动态迁移,静态迁移,也有人称之为冷迁移和热迁移,或者离线迁移在线迁移;静态迁移和动态迁移的 区别就是静态迁移明显有一段时间客户机的服务不可用,而动态迁移则没有明显的服务暂停时间,静态迁移有两种1,是关闭客户机将其硬板镜像复制到另一台宿主机系统,然后回复启动起来,这种迁移不保留工作负载,2是,两台客户机公用一个存储系统,关闭一台客户机,防止其内存到另一台宿主机,这样做的方式是,保存迁移前的负载
在2020-03-16 18:00左右收到告警,业务出现发送RocketMQ失败,在约1分钟左右后自动恢复。RocketMQ运行向来稳定,为何也抖动了?
下载对应的版本至 自定义文件夹 dm8,并且解压获取dm8数据库的镜像文件 .iso文件
现代机器大部分是 64 位的,JVM 也从 9 开始仅提供 64 位的虚拟机。在 JVM 中,一个对象指针,对应进程存储这个对象的虚拟内存的起始位置,也是 64 位大小:
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 终于,M1系列的Mac可以启动Linux-macOS双系统了! △ Asahi Linux官方供图 Asahi Linux在官方推特上宣布: 首个原生支持M1系列Mac的Linux测试版现在已发布,面向所有人开放。 大家只需在终端输入一行代码即可启动安装: curl https://alx.sh | sh 有迫不及待的网友已经上手,纷纷晒出自己的成功界面: 这其中还不乏“体验良好”的声音: 流畅度令人惊讶!YouTube完全可以正常播
本文主要介绍AM64x的Cortex-A53、Cortex-M4F和Cortex-R5F核心程序自启动使用说明。默认使用AM6442进行测试演示,AM6412测试步骤与之类似。
传统的多核运算是使用SMP(Symmetric Multi-Processor )模式:将多个处理器与一个集中的存储器和I/O总线相连。所有处理器只能访问同一个物理存储器,因此SMP系统有时也被称为一致存储器访问(UMA)结构体系,一致性意指无论在什么时候,处理器只能为内存的每个数据保持或共享唯一一个数值。
作为云计算最重要的底层基础之一,KVM 虚拟化软件在现代的数据中心中应用非常广泛。基于 KVM 的 hypervisor 包括了构成宿主机的软硬件,共同为虚拟机中的应用程序提供高性能的 CPU、内存和 IO 设备等资源。在大规模部署的生产环境中,作为云服务提供商(Cloud Service Provider),如何从技术上保证软硬件的可运维性,一直是大家重点关注的问题。
QoS(Quality of Service) 即服务质量,QoS 是一种控制机制,它提供了针对不同用户或者不同数据流采用相应不同的优先级,或者是根据应用程序的要求,保证数据流的性能达到一定的水准。kubernetes 中有三种 Qos,分别为:
一、前言 1) Linux Proc文件系统,通过对Proc文件系统进行调整,达到性能优化的目的。 2) Linux性能诊断工具,介绍如何使用Linux自带的诊断工具进行性能诊断。 加粗斜体表示可以直接运行的命令。 下划线表示文件的内容。 二、/proc/sys/kernel/优化 1) /proc/sys/kernel/ctrl-alt-del 该文件有一个二进制值,该值控制系统在接收到ctrl+alt+delete按键组合时如何反应。这两个值分别是: 零(0)值,表示捕获ctrl+alt+delete,并将其送至 init 程序;这将允许系统可以安全地关闭和重启,就好象输入shutdown命令一样。 壹(1)值,表示不捕获ctrl+alt+delete,将执行非正常的关闭,就好象直接关闭电源一样。
由于Linux采用了和Windows不同的文件系统,所以和Windows用户熟悉的文件管理模式不通,这里来简单说说Linux的根("/")目录下目录的用途
干货福利,第一时间送达! 在嵌入式项目预研前期阶段,我们常常需要对某个平台进行资源和性能方面的评估,以下是最常见的一些评估指标:
*本文原创作者:gaearrow,本文属FreeBuf原创奖励计划,未经许可禁止转载 。 共享库基础知识 程序由源代码变成可执行文件,一般可以分解为四个步骤,分别是预处理(Prepressing)、编译(Compilation)、汇编(Assembly)和链接(Linking)。 预处理过程主要处理源代码中以“#”开始的预编译指令;编译过程把预处理完成的文件进行词法、语法、语义等分析并产生相应的汇编代码文件;汇编过程将汇编代码文件翻译成机器可以执行的目标文件;链接过程将汇编生成的目标文件集合相连接并生成
1.引导内存分配器的作用因为内核里面有很多内存结构体,不可能在静态编译阶段就静态初始化所有的这些内存结构体。另外,在系统启动过程中,系统启动后的物理内存分配器本身也需要初始化,如伙伴分配器,那么伙伴分配器如何获取内存来初始化自己呢 ?为了达到这个目标,我们先实现一个满足要求的但是可能效率不高的笨家伙,引导内存分配器。用它来负责系统初始化初期的内存管理, 最重要的, 用它来初始化我们内存的数据结构, 直到我们真正的内存管理器被初始化完成并能投入使用, 我们将旧的内存管理器丢掉。
通过我们前面的ELK学习,我们已经深入了解了ELK的相关知识以及腾讯云Elasticsearch 的操作与维护,那么,在实际生产应用中,我们如何根据企业自身业务的数据存量需求去选择合适配置的腾讯云ES集群进而保证企业应用的高效持续安全呢?那么今天我们就来讲讲这个问题:
malloc动态内存分配函数原理详解及编程用法举例(本文由www.169it.com搜集整理)
领取专属 10元无门槛券
手把手带您无忧上云