首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一文看懂影子和扩展

后引入机制,把虚拟地址送往MMU,MMU查TLB不中的情况下,依次查就可以找到对应的物理地址。...二.影子 (Shadow page table) 影子我用一句话来描述就是:VMM把Guest和Host中的合并成一个,称为影子,来实现GVA->HPA映射。...4, 把GVA -> HPA,这一路的映射关系记录到中,这个就是影子。...虚拟机和影子通过一个哈希建立关联(当然也有其他的关联方式),客户机操作系统把当前进程的基址载入PDBR时而VMM将会截获这一特权指令,将进程的影子基址载入客户机PDBR,使客户机在恢复运行时...硬件层面引入EPTP寄存器,来指向EPT基地址。Guest运行时,Guest被载入PDBR,而 EPT 被载入专门的EPT 指针寄存器 EPTP。

1.4K20
您找到你想要的搜索结果了吗?
是的
没有找到

内核调试

一、配置内核 首先配置内核,使其支持导出内核到debugfs下面: Kernel hacking ---> ---> [*] Export kernel pagetable layout to...start] - [PCI I/O end]同上,专门用于PCI设备使用的地址空间,一般映射大小为16M [vmemmap start] - [vmemmap end]对与ARM64用于page映射区,linux...地址空间port属性说明 第一列 当前的映射范围地址 第二列 代表此映射范围大小 PMD PUD PTE 当标识为PMD PUD表示当前映射为block映射,如当前为4K,则pud的block映射一次性可映射...当标识为PTE表示为映射即PAGE_SIZE大小4K。 USR AP标记,用于标识当前范围是否在用户空间还是内核空间可读可写或者仅读。...x表述当前范围特权级别模式可执行,就是内核的可执行代码段,在内核中这段一般指向内核的text*段 SHD 表示可共享属性,在arm64上表述为多核之间可共享其可见 AF 访问标志,当首次映射时,

13010

Linux内核管理-那些鲜为人知的秘密

,而管理是在虚拟内存管理中尤为重要,本文主要以回答几个管理中关键性问题来解析Linux内核管理,看一看管理中那些鲜为人知的秘密。...Linux内核为何使用多级?...2)使用多级结构优劣: 优势: 1.节省内存 2.可以按需分配各级 3.可以离散存储 劣势: 需要遍历多级,需要多次访问内存,实现复杂度高点 3)Linux内核综合考虑: 典型的以时间换空间...2)Linux内核 填写,将基地址告诉mmu 内核初始化建立内核,实现缺页异常等机制为用户任务按需分配并映射。 当然,内核也可以遍历,如缺页异常时遍历进程。 10....12.遍历过程 下面以arm64处理器架构多级遍历作为结束(使用4级大小为4K): Linux内核中 可以将扩展到5级,分别是全局目录(Page Global Directory,

1.7K21

深入理解Linux内核映射分页机制原理

Linux有一个三层的结构,可以很容易地将其包装成适合两层的结构—只使用PGD和PTE。但是,Linux还要求每个页面有一个“PTE”,而且至少要有一个“dirty”位。...因此,在这里稍微调整了实现—告诉Linux在第一级有2048个条目,每个都是8字节。二级包含两个连续排列的硬件PTE表项,前面的表项是包含Linux需要的状态信息的Linux PTE。...ARMv7属性的定义分为Linux版本的和ARMv7硬件的Linux版本的PTE属性定义加入前缀L_,如下所示: /* * "Linux" PTE definitions....通过对比Linux版本的和ARMv7硬件的会发现,ARMv7硬件的缺少“dirty”位和“young”位。...“young”位的模拟方法与“dirty”位类似,也是利用了两套PTE模拟,一套用于Linux,一套用于ARM硬件。 ARMv7如何下发到硬件?

2.8K10

Linux-3.14.12内存管理笔记【建立内核(1)】

前面已经分析过了Intel的内存映射和linux的基本使用情况,已知head_32.S仅是建立临时,内核还是要建立内核,做到全面映射的。...建立内核前奏,了解两个很关键的变量: max_pfn:最大物理内存页面帧号; max_low_pfn:低端内存区(直接映射空间区的内存)的最大可用帧号; max_pfn 的值来自setup_arch...Linux是一个支持多硬件平台的操作系统,各种硬件芯片的分页并非固定的2级(全局目录和),仅仅Intel处理器而言,就存在3级的情况(全局目录、中间目录和),而到了64位系统的时候就成了4...所以Linux为了保持良好的兼容性和移植性,系统设计成了以下的4级分页模型,根据平台环境和配置的情况,通过将上级目录和中间目录的索引位设置为0,从而隐藏了三级目录和中间目录的存在。...此外还有一个准备操作,在setup_arch()函数中调用的缓冲区申请操作: early_alloc_pgt_buf(): 【file:/arch/x86/mm/init.c】 void __init

1.8K41

多级的好处

,如果只使用了一个,一个表项的大小为4byte,32位系统有4GB的物理空间(一个进程看到是4GB大小的虚拟空间),每一个表项对应着物理空间的第xxx(4KB大小的),那么应该有4GB/4KB=...如果是二级,规则就会改变,让二级对应到物理内存上的4KB大小的,一级此时变成映射为物理地址的4MB(这样子是无法定位到具体的(4KB)的,所以二级再去找),这样先找到一级,一级再和二级进行结合...,二级表相当于一级4MB分成了1024个(1KB个)4KB,找完后二级充当了offset的角色,此时定位到具体的4KB的页面,再用一级的offset一结合定位到具体物理地址。...这样一个进程浪费掉的空间是一级占用的:(4GB/4MB)*4byte=4KB,二级浪费掉的是1kb(1个一级占用这么多)*1kb(此时有1kb(4GB/4MB)个一级)=4MB,加起来是...4MB+4KB,比光用一级要多4KB,但是2级是可以不存在的,比如此时程序只用了%20的,那么4MB就需要乘以%20,这样一下子就比只有一级时少了。

1.6K30

Linux从头学16:操作系统-如何把【目录和】当做普通物理进行操作的?

进行"自操作" 在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。...如果你看过 Linux 内核相关书籍,一定对下面这张图又熟悉、又恐惧: 这是 Linux 系统中,处理单元的多级查询方式。...其中黄色背景部分:上级目录索引 和 中间目录索引,是 Linux 系统自己扩展的,在原本的 x86 处理器中是不存在的,这也是导致 Linux 中相关部分代码更加复杂的原因。...文章链接在此:Linux从头学15:【目录和】-理论 + 实例 + 图文的最完全、最接地气详解!,但是其中有一个环节被特意忽略过去了。...详细的讨论过程,请参考上一篇文章:Linux从头学15:【目录和】-理论 + 实例 + 图文的最完全、最接地气详解!。

1.5K20

抽象数据结构抽象数据结构

抽象数据结构 抽象数据结构(ADT)是一些操作的集合,集合了一些必要且重用性高的操作,这些操作在一个项目中只被编写一次。...抽象数据结构只定义操作的存在,并不定义操作的实现 概念 是一种基础的数据结构,是一系列逻辑上"顺序"的数据(顺序指具有连续的数值索引)。...例如$A_{0},A_{1},A_{2}$就是一个,数据具有连续索引1,2,3。...数组实现:查找快,插入与删除慢,大小固定,内存中一般连续 链表实现:查找较慢,插入与删除相对较快,大小可变,内存中一般不连续 需要的方法 is_empty:判断是否为空 is_last:判断是否为结尾...find:根据值获得在中的节点(find_previous:获得前驱元) visit:根据位置获得值(find) delete:删除元素 insert:插入元素 实现 接口与结构体 //中数据类型

1.1K60

数据结构 Hash(哈希

参考链接:数据结构(严蔚敏) 文章发布很久了,具体细节已经不清晰了,不再回复各种问题 文章整理自严蔚敏公开课视频 可以参考 https://www.bilibili.com/video/av22258871.../ 如果链接失效 可以自行搜索 数据结构严蔚敏视频 @2021/07/12 一、什么是Hash 要想知道什么是哈希,那得先了解哈希函数 哈希函数 对比之前博客讨论的二叉排序树 二叉平衡树 红黑树...即 地址index=H(key) 说白了,hash函数就是根据key计算出应该存储地址的位置,而哈希是基于哈希函数建立的一种查找 二、哈希函数的构造方法 根据前人经验,统计出如下几种常用hash...决定hash查找的ASL因素: 1)选用的hash函数 2)选用的处理冲突的方法 3)hash的饱和度,装载因子 α=n/m(n表示实际装载数据长度 m为长) 一般情况,假设hash函数是均匀的...也不是,就像100的长只存一个数据,α是小了,但是空间利用率不高啊,这里就是时间空间的取舍问题了。通常情况下,认为α=0.75是时间空间综合利用效率最高的情况。 上面的这个可是特别有用的。

94320

内核知识第八讲,PDE,PTE,目录,的内存管理

内核知识第八讲,PDE,PTE,目录,的内存管理 一丶查看GDT....首先我们的CR3寄存器保存了的首地址. 这里有一个目录,还有的关键词. 目录: 也称为PDE,而称之为PTE....CPU会通过虚拟地址,当作下表.去目录中查询.然后查到的结果再去中查询.这样就查到对应的物理地址了....PDE的大小:   目录,存储在一个4K字节的物理中,其中每一项是4个字节.保存了的地址.   而最大是1M个. PTE的大小.   PTE的大小也和PDE一样的....但是通过两个查询.可以映射4G内存.而上面的设计方法不行. 首先前边20位保存了或者物理地址的基地址. 比如我们的目录. 查到了第5项.那么从中取出千20位来,加上000就等于了.

1.4K10

【进程 进程通常存在PCB中

通俗解释进程-科学家做蛋糕 科学家做蛋糕 然后女儿被蜜蜂蛰了 进程–在内核 内存管理 经典 老式 管理方法: 基址寄存器(程序开始的地方) + 界限寄存器(程序长度) 空闲内存管理...每个框有一个编号,即“框号”(框号=帧号=内存块号=物理块号=物理页号),框号从0开始 将进程的逻辑地址空间也分为与框大小相等的一个个部分,每个部分称为一个“”或“页面”。...操作系统以框为单位为各个进程分配内存空间。进程的每个页面分别放入一个框中。也就是说,进程的页面与内存的框有一一对应的关系。 各个页面不必连续存放,可以放到不相邻的各个框中。...重要的数据结构—— 为了能知道进程的每个页面在内存中存放的位置,操作系统要为每个进程建立一张。...注:通常存在PCB中 一个进程对应一张 进程的每个页面对应一个表项 每个表项由“页号”和“块号”组成 表记录进程页面和实际存放的内存块之间的映射关系

1.2K20

宋宝华: ARM64 Linux内核的块映射

我们看看这种情况下的,我们既可以用最终的【20:12】对应的PTE映射项,以4K为单位,进行虚拟地址到物理地址的映射;又可以以【29:21】对应的PMD映射项,以2M为单位,进行虚拟地址到物理地址的映射...当然,如果用户态的虚实映射是这样的,用户实际得到了一个1GB的巨。但是对于内核的线性映射区域而言,即便我们进行了1GB的PUD映射,这1G内部就可以进一步切割为4KB或者2MB的巨。...ptdump.c和ptdump_debugfs.c 我们把它们全部选中,这样我们可以得到一个debugfs接口: /sys/kernel/debug/kernel_page_tables 来获知内核态的情况...如果我把这个kernel启动选项去掉,我得到的内核是完全不一样,线性映射区也全部是PTE映射: ?...牧春童鞋在“Linux阅码场”这里还有一些精彩的文章: 宋牧春:Linux设备树文件结构与解析深度分析(1) 宋牧春:Linux设备树文件结构与解析深度分析(2) 宋牧春:多图详解Linux内存分配器

3.1K10

ARM32 映射

我们从ARM linux内核建立具体内存区间的映射过程中来看映射是如何实现的。...crate_mapping()函数就是为一个给定内存区间建立映射,这个函数使用map_desc数据结构来描述一个内存区间。...,注意ARM Linux中实现了两份,硬件的地址r0+2048。...该函数的主要目的是根据Linux版本的页面表项内容来填充ARM硬件版本的表项; 首先把linux内核版本的表项内容写入linux版本的中,然后根据mem_type数据结构prot_pte的标志位来设置...linux内核最早基于x86体系结构设计的,所以linux内核关于的许多术语和设计都是针对x86体系的,而ARM Linux只能从软件架构上去跟随了,因此设计了两套

2.8K30

Linux从头学15:【目录和】-理论 + 实例 + 图文的最完全、最接地气详解

作 者:道哥,10+年嵌入式开发老兵,专注于:C/C++、嵌入式、Linux。...关注下方公众号,回复【书籍】,获取 Linux、嵌入式领域经典书籍;回复【PDF】,获取所有原创文章( PDF 格式)。...这里的每一个,就称作,所以一共有1024个。 一个中一共有1024个表项,每一个表项占用4个字节,所以一个就占用4KB的物理内存空间,正好是一个物理的大小。...表示这个物理中的数据是否被写过; 目录 现在,每一个物理,都被一个中的一个表项来指向了,那么这1024个的地址,应该怎么来管理呢? 答案是:目录!...512 字节),存放到刚才分配的物理中; 检查程序内容是否读取完毕:是-进入第 6 步;否-返回到第 3 步; 为用户程序创建一些必要的内核数据结构,比如:TSS、TCB/PCB 等等; 为用户程序创建

1.2K30

Linux 标准大和透明大

Huge pages ( 标准大 ) 和 Transparent Huge pages( 透明大 ) 在 Linux 中大分为两种:Huge pages ( 标准大 ) 和 Transparent...内存是以块即的方式进行管理的,当前大部分系统默认的大小为 4096 bytes 即 4K。1MB 内存等于 256 ;1GB 内存等于 256000 。...CPU 拥有内置的内存管理单元,包含这些页面的列表,每个页面通过条目引用。当内存越来越大的时候, CPU 需要管理这些内存的成本也就越高,这样会对操作系统的性能产生影响。...Huge Pages Huge pages 是从 Linux Kernel 2.6 后被引入的,目的是通过使用大内存来取代传统的 4kb 内存页面, 以适应越来越大的系统内存,让操作系统可以支持现代硬件架构的大页面容量功能...Transparent Huge Pages Transparent Huge Pages 缩写 THP ,这个是 RHEL 6 开始引入的一个功能,在 Linux6 上透明大是默认启用的。

4.8K50

操作系统多级与快--12

操作系统多级与快--12 为了提高内存空间利用率,应该小,但是小了就大了... 会很大,放置就成了问题......第一种尝试,只存放用到的 第二种尝试:多级,即目录(章)+(节) 多级提高了空间效率,但在时间上? TLB得以发挥作用的原因 为什么TLB条目数可以在64-1024之间?...就以Linux 0.11 每页4k进行计算,4G/4K=1M ,4G寻址空间,可以定位到1M的页数。...用书的章目录和节目录来类比思考… ---- 第二种尝试:多级,即目录(章)+(节) 对于书本而言,普通图书的目录结构通过是由章加小节构成的,如下: 假设我们需要去看看链表的相关知识点,...为了保证表项连续,并且还要减少对内存的浪费,就必须采用多级的形式,但是多级时间上的不足,应该由什么来弥补呢?

1.6K50

数据结构_顺序

数据结构_SeqList顺序 前言:此类笔记仅用于个人复习,内容主要在于记录和体现个人理解,详细还请结合bite课件、录播、板书和代码。...---- [toc] ---- 线性 线性(linear list)是n个具有相同特性的元素的有限序列,是一种数据结构,包括:顺序,列表,栈,队列,字符串等 逻辑结构上:是线性结构,连续的一条直线...顺序分为: 静态顺序:用定长数组存储元素 动态顺序:使用动态开辟的数组存储元素 静态顺序由于容量是有限的,所以在实际应用的时候不如动态顺序更灵活,动态顺序在实际应用中更广泛 动态顺序的实现...动态顺序的接口: 实现动态顺序的增删查改 #pragma once #include #include #include // 要求...int取别名,便于在后期见到之后就知道是定义的顺序存储的类型 // 动态的顺序 typedef struct SeqList { SLDataType* a; int size; //

33820
领券