首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ARM32 映射

我们从ARM linux内核建立具体内存区间的映射过程中来看映射是如何实现的。...512个页面是给ARM硬件MMU使用的; 一次映射两个相邻的一级表项,也就是对应的两个相邻的二级都存放在一个page中; 然后把这个PTE页面的基地址通过__pmd_populate(...,注意ARM Linux中实现了两份,硬件的地址r0+2048。...该函数的主要目的是根据Linux版本的页面表项内容来填充ARM硬件版本的表项; 首先把linux内核版本的表项内容写入linux版本的中,然后根据mem_type数据结构prot_pte的标志位来设置...linux内核最早基于x86体系结构设计的,所以linux内核关于的许多术语和设计都是针对x86体系的,而ARM Linux只能从软件架构上去跟随了,因此设计了两套

2.8K30

深入理解Linux内核映射分页机制原理

当然额外的内存访问本身是分页机制相对分段机制的缺陷,一级映射也存在这样的缺陷,只是多级映射将这个缺点再次放大。...mmap映射的内存被munmap解除TLB怎么处理?…… 针对这些话题本文不做深入探讨,可以阅读另一篇为其量身定做的博文《深入Linux内核(内存篇)—TLB》。 1.5 多大合适?...大的好处: 省内存:可以解决分页机制占用内存的问题,取得和多级一样节省内存的效果; 对TLB友好:大表意味着地址转换时需要更少的映射表项,映射表项少了意味着TLB缓存的表项少,这样就提高了...映射过程是MMU通过TTBRx和虚拟地址VA[31:20]索引到PGD一级,再由PGD一级和虚拟地址VA[19:12]索引到PTE映射表,在由PTE映射表和虚拟地址VA[11:0]索引到物理地址...ARMv7属性的定义分为Linux版本的和ARMv7硬件的Linux版本的PTE属性定义加入前缀L_,如下所示: /* * "Linux" PTE definitions.

2.9K10
您找到你想要的搜索结果了吗?
是的
没有找到

Linux 匿名的反向映射

我们知道LINUX的内存管理系统中有”反向映射“这一说,目的是为了快速去查找出一个特定的物理在哪些进程中被映射到了什么地址,这样如果我们想把这一换出(SWAP),或是迁移(Migrate)的时候,就能相应该更改所有相关进程的来达到这个目的...1、为什么要使用反向映射   物理内存的分页机制,一个PTE(Page Table Entry)对应一个物理,但一个物理可以由多个PTE与之相对应,当该页要被回收时,Linux2.4的做法是遍历每个进程的所有...* 最低为0映射,此时mapping指向文件节点地址空间。...Linux采用三级: PGD:顶级,由pgd_t项组成的数组,其中第一项指向一个二级。...PMD:二级,由pmd_t项组成的数组,其中第一项指向一个三级(两级处理器没有物理的PMD)。 PTE:是一个对齐的数组,第一项称为一个表项,由pte_t类型表示。

3.6K31

宋宝华: ARM64 Linux内核的块映射

我们看看这种情况下的,我们既可以用最终的【20:12】对应的PTE映射项,以4K为单位,进行虚拟地址到物理地址的映射;又可以以【29:21】对应的PMD映射项,以2M为单位,进行虚拟地址到物理地址的映射...当然,如果用户态的虚实映射是这样的,用户实际得到了一个1GB的巨。但是对于内核的线性映射区域而言,即便我们进行了1GB的PUD映射,这1G内部就可以进一步切割为4KB或者2MB的巨。...ptdump.c和ptdump_debugfs.c 我们把它们全部选中,这样我们可以得到一个debugfs接口: /sys/kernel/debug/kernel_page_tables 来获知内核态的情况...如果我把这个kernel启动选项去掉,我得到的内核是完全不一样,线性映射区也全部是PTE映射: ?...牧春童鞋在“Linux阅码场”这里还有一些精彩的文章: 宋牧春:Linux设备树文件结构与解析深度分析(1) 宋牧春:Linux设备树文件结构与解析深度分析(2) 宋牧春:多图详解Linux内存分配器

3.2K10

Linux 内核 内存管理】内存映射原理 ② ( 内存映射概念 | 文件映射 | 匿名映射 | 内存映射原理 | 分配虚拟内存 | 产生缺页异常 | 分配物理内存 | 共享内存 | 进程内存 )

文章目录 一、内存映射概念 二、内存映射原理 1、分配虚拟内存 2、产生缺页异常 3、分配物理内存 三、共享内存 四、进程内存段的内存映射类型 一、内存映射概念 ---- 内存映射 概念 : "..." 物理内存空间 “ 映射到 ” 虚拟内存空间 " , 其中的数据是随机值 ; 二、内存映射原理 ---- 1、分配虚拟内存 分配 虚拟内存 : 在 Linux 系统中 创建 " 内存映射 “ 时..., 会在 ” 用户虚拟地址空间 “ 中 , 分配一块 ” 虚拟内存区域 " ; 2、产生缺页异常 缺页异常 : Linux 内核在分配 " 物理内存 “ 时 , 采用了 ” 延迟策略 “ , 即进程第一次访问...缺页异常 " 后 , 会 分配 " 物理内存 “ , 并且将 要映射的文件 的 部分数据 读取到 该 ” 物理内存 " 中 ; 匿名映射 : 对于 " 匿名映射 " , 直接分配 " 物理内存 “..., 并且在 " “ 中 , 将 ” 虚拟内存 " 映射到 ” 物理内存 " ; 三、共享内存 ---- 内存映射 与 共享内存 关系 : 文件映射 : 在进程间的 " 共享内存 " 就是使用

8.2K20

一文看懂影子和扩展

所以在虚拟化场景下要解决虚拟机里面的进程如何访问物理机上的内存这一问题,也就是GVA->HPA的映射问题。 在硬件辅助内存虚拟化出现之前,这个过程是通过软件实现的,即通过VMM来实现的。...二.影子 (Shadow page table) 影子我用一句话来描述就是:VMM把Guest和Host中的合并成一个,称为影子,来实现GVA->HPA映射。...4, 把GVA -> HPA,这一路的映射关系记录到中,这个就是影子。...虚拟机和影子通过一个哈希建立关联(当然也有其他的关联方式),客户机操作系统把当前进程的基址载入PDBR时而VMM将会截获这一特权指令,将进程的影子基址载入客户机PDBR,使客户机在恢复运行时...硬件层面引入EPTP寄存器,来指向EPT基地址。Guest运行时,Guest被载入PDBR,而 EPT 被载入专门的EPT 指针寄存器 EPTP。

1.5K20

Linux中PGD、PUD、PMD等概念介绍

1、PGD: Page Global Directory Linux系统中每个进程对应用户空间的pgd是不一样的,但是linux内核 的pgd是一样的。...USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)) 这样一来,每个进程的页面目录就分成了两部分,第一部分为“用户空间”,用来映射其整个进程空间...(0x0000 0000-0xBFFF FFFF)即3G字节的虚拟地址;第二部分为“系统空间”,用来映射(0xC000 0000-0xFFFF FFFF)1G字节的虚拟地址。...可以看出Linux系统中每个进程的页面目录的第二部分是相同的,所以从进程的角度来看,每个进程有4G字节的虚拟空间,较低的3G字节是自己的用户空间,最高的1G字节则为与所有进程以及内核共享的系统空间。...每一个表项指向一个框,框就是真正的物理内存

3.2K30

内核调试

一、配置内核 首先配置内核,使其支持导出内核到debugfs下面: Kernel hacking ---> ---> [*] Export kernel pagetable layout to...page映射区,linux内核用page结构体管理所有物理内存,每一大小为PAGE_SIZE对于arm64,可能是4K,16K,64K。...地址空间port属性说明 第一列 当前映射范围地址 第二列 代表此映射范围大小 PMD PUD PTE 当标识为PMD PUD表示当前映射为block映射,如当前为4K,则pud的block映射一次性可映射...当标识为PTE表示为映射即PAGE_SIZE大小4K。 USR AP标记,用于标识当前范围是否在用户空间还是内核空间可读可写或者仅读。...x表述当前范围特权级别模式可执行,就是内核的可执行代码段,在内核中这段一般指向内核的text*段 SHD 表示可共享属性,在arm64上表述为多核之间可共享其可见 AF 访问标志,当首次映射时,

13710

分析匿名(anonymous_page)映射

而且没有强制0。翻译过来的意思就是:如果是读操作触发的缺页,则映射到一个头通用的零。...这样做是为了提供效率 调用pte_mkspecial生成一个特殊表项,映射到专有的0,一大小 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr...define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) pte_map_lock : 根据pmd,address找到pte对应的一个表项...it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); 增加mm_count的引用计数 设置反向映射...将此添加到LRU链表中去,回收的时候使用 set_pte_at:设置表项,pte里面的值就是entry 更新mmu的cache,在arm64中update_mmu_cache为空函数,具体操作时在

1.5K21

Linux内核管理-那些鲜为人知的秘密

,而管理是在虚拟内存管理中尤为重要,本文主要以回答几个管理中关键性问题来解析Linux内核管理,看一看管理中那些鲜为人知的秘密。...Linux内核为何使用多级?...2)Linux内核 填写,将基地址告诉mmu 内核初始化建立内核,实现缺页异常等机制为用户任务按需分配并映射。 当然,内核也可以遍历,如缺页异常时遍历进程。 10....填写/切换时机 1)内核填充 内核初始化过程: 物理地址 -> 恒等映射(建立恒等映射和粗粒度内核) ->打开mmu -> paging_init(建立细粒度的内核和内存线性映射...12.遍历过程 下面以arm64处理器架构多级遍历作为结束(使用4级大小为4K): Linux内核中 可以将扩展到5级,分别是全局目录(Page Global Directory,

1.7K21

Linux-3.14.12内存管理笔记【建立内核(3)

总的来说就是该临时内核映射区间是为了给各个CPU准备一个指定的窗口空间。由于kmap_atomic()对该区间的使用,所以该区间必须保证其连续性。...,是从缓冲空间中申请还是通过memblock算法申请内存。...,创建并使其指向被创建的。...为了避免前期可能对固定映射区已经分配了表项,基于临时内核映射区间要求连续性的保证,所以在此重新申请连续的空间将原内容拷贝至此。...值得注意的是,与低端内存的初始化不同的是,这里的只是被分配,相应的PTE项并未初始化,这个工作将会交由以后各个固定映射区部分的相关代码调用set_fixmap()来将相关的固定映射与物理内存关联

1.5K11

Linux-3.14.12内存管理笔记【建立内核(1)】

前面已经分析过了Intel的内存映射linux的基本使用情况,已知head_32.S仅是建立临时,内核还是要建立内核,做到全面映射的。...建立内核前奏,了解两个很关键的变量: max_pfn:最大物理内存页面帧号; max_low_pfn:低端内存区(直接映射空间区的内存)的最大可用帧号; max_pfn 的值来自setup_arch...Linux是一个支持多硬件平台的操作系统,各种硬件芯片的分页并非固定的2级(全局目录和),仅仅Intel处理器而言,就存在3级的情况(全局目录、中间目录和),而到了64位系统的时候就成了4...所以Linux为了保持良好的兼容性和移植性,系统设计成了以下的4级分页模型,根据平台环境和配置的情况,通过将上级目录和中间目录的索引位设置为0,从而隐藏了三级目录和中间目录的存在。...由此管中窥豹,看到了Linux内存分页映射模型的存在和相关设计,暂且也就先了解这么多。 分析宏是一件很乏味的事情,不过以小见大却是一件很有意思的事情。

1.8K41

DPDK巨地址管理Linux内核内存管理内存映射pagemaprdma内存注册

DPDK巨地址管理/Linux内核内存管理/内存映射/pagemap/rdma内存/注册术语PFN: 物理地址对应的帧号:pfn = pte_pfn(*pte)INFINIBAND_USER_MEM...通常不加锁,但分割透明大可能会加锁。 如果需要,底层迭代器将从 highmem 映射 PTE 目录。 如果任何回调返回非零值,则遍历将中止并将返回值传播回调用者。 否则返回 0。...请阅读有关大Linux 内核文档,以获取有关如何保留大的更多信息。...8、通过remap_pfn_range函数建立,即实现了文件地址和虚拟地址区域的映射关系。此时,这片虚拟地址并没有任何数据关联到主存中。...9、进程的读或写操作访问虚拟地址空间这一段映射地址,通过查询,发现这一段地址并不在物理页面上。因为目前只建立了地址映射,真正的硬盘数据还没有拷贝到内存中,因此引发缺页异常。

21410

多级的好处

,如果只使用了一个,一个表项的大小为4byte,32位系统有4GB的物理空间(一个进程看到是4GB大小的虚拟空间),每一个表项对应着物理空间的第xxx(4KB大小的),那么应该有4GB/4KB=...如果是二级,规则就会改变,让二级对应到物理内存上的4KB大小的,一级此时变成映射为物理地址的4MB(这样子是无法定位到具体的(4KB)的,所以二级再去找),这样先找到一级,一级再和二级进行结合...,二级表相当于一级4MB分成了1024个(1KB个)4KB,找完后二级充当了offset的角色,此时定位到具体的4KB的页面,再用一级的offset一结合定位到具体物理地址。...这样一个进程浪费掉的空间是一级占用的:(4GB/4MB)*4byte=4KB,二级浪费掉的是1kb(1个一级占用这么多)*1kb(此时有1kb(4GB/4MB)个一级)=4MB,加起来是...4MB+4KB,比光用一级要多4KB,但是2级是可以不存在的,比如此时程序只用了%20的,那么4MB就需要乘以%20,这样一下子就比只有一级时少了。

1.6K30

Linux从头学16:操作系统-如何把【目录和】当做普通物理进行操作的?

进行"自操作" 在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。...如果你看过 Linux 内核相关书籍,一定对下面这张图又熟悉、又恐惧: 这是 Linux 系统中,处理单元的多级查询方式。...其中黄色背景部分:上级目录索引 和 中间目录索引,是 Linux 系统自己扩展的,在原本的 x86 处理器中是不存在的,这也是导致 Linux 中相关部分代码更加复杂的原因。...文章链接在此:Linux从头学15:【目录和】-理论 + 实例 + 图文的最完全、最接地气详解!,但是其中有一个环节被特意忽略过去了。...详细的讨论过程,请参考上一篇文章:Linux从头学15:【目录和】-理论 + 实例 + 图文的最完全、最接地气详解!。

1.5K20

内核知识第八讲,PDE,PTE,目录,的内存管理

内核知识第八讲,PDE,PTE,目录,的内存管理 一丶查看GDT....线性地址转物理地址需要注意的问题. 这个问题则是映射. 我们知道,页码是高20位,那么低12为就是偏移了....首先我们的CR3寄存器保存了的首地址. 这里有一个目录,还有的关键词. 目录: 也称为PDE,而称之为PTE....PDE的大小:   目录,存储在一个4K字节的物理中,其中每一项是4个字节.保存了的地址.   而最大是1M个. PTE的大小.   PTE的大小也和PDE一样的....但是通过两个查询.可以映射4G内存.而上面的设计方法不行. 首先前边20位保存了或者物理地址的基地址. 比如我们的目录. 查到了第5项.那么从中取出千20位来,加上000就等于了.

1.4K10
领券