首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

linux 系统调用 write 的原子性

开始阅读 nginx 源码的时候就一直伴随着一个问题,那就是多进程的 nginx 模型是怎么保证多个进程同时写入一个文件不发生数据交错呢? 猜想中,主要有以下几种解决方案: 1. 最传统的,正在写文件的进程加锁,其他进程等待,但是这样的情况是绝对不允许的,效率太过低下 2. 写 log 前测试锁状态,如果已经锁定,则写入进程自己的缓冲区中,等待下次调用时同步缓冲区,这样做的好处是无需阻塞,提高了效率,但是就无法做到 log 的实时了,这样做工程中也是绝对无法接受的,一旦发生问题,将无法保证 log 是否已经被写入,因此很难定位 3. 一个进程专门负责写 log,其他进程通过域套接字或者管道将 log 内容发送给他,他持续阻塞在 epoll_wait 上,直到收到信息,立即写入,但是众所周知,nginx 是调用同一个函数启动所有进程的,并没有专门调用函数启动所谓的 log 进程,除了 master 和 worker,nginx 也确实没有 log 进程存在 4. 那么就是进程启动后,全部去竞争某个锁,竞争到该锁的 worker 执行 log worker 的代码,其余的 worker 继续运行相应程序,这个方案看上去是一个不错的方案,如果是单 worker 的话,那么就无需去使用该锁即可

06

五分钟用C++11实现Android系统的Handler机制

线程作为系统的基础资源,相信大多数读者都有使用到。一般情况下我们会直接开一个线程做一些耗时操作,处理完之后让线程自动结束,资源被系统回收。这种简单粗暴的方法不少读者、甚至一些大厂的APP都在用。以Java语言为例,我们可以直接new一个Thread对象,然后覆盖run方法,最后调一下start方法便可以成功运行一个线程。如果我们每次异步做一些耗时处理都单独开启一个线程,比如异步加载网络图片这种高并发操作,每张图片都开一个线程的话,必然会造成线程资源的浪费,而且也没有很好的方法去处理跨线程通讯的问题。由于语言层面的低成本导致系统的线程资源被滥用,已经成为了一个很普遍的现象。   Android系统的Handler是一种很好的解决以上问题的机制,如果能够在C/C++实现这样一套机制,将会极大的降低C/C++多线程的使用成本。通过本文你将了解到Android系统的Handler的实现原理,以及如何使用C/C++来实现这样一套机制。本文不打算过多的介绍Android系统中的源码实现,而是直接使用C++11来实现。

04

最浅显易懂的一篇:RCU机制

RCU(Read-Copy Update)是数据同步的一种方式,在当前的Linux内核中发挥着重要的作用。RCU主要针对的数据对象是链表,目的是提高遍历读取数据的效率,为了达到目的使用RCU机制读取数据的时候不对链表进行耗时的加锁操作。这样在同一时间可以有多个线程同时读取该链表,并且允许一个线程对链表进行修改(修改的时候,需要加锁)。RCU适用于需要频繁的读取数据,而相应修改数据并不多的情景,例如在文件系统中,经常需要查找定位目录,而对目录的修改相对来说并不多,这就是RCU发挥作用的最佳场景。 Linux内核源码当中,关于RCU的文档比较齐全,你可以在 /Documentation/RCU/ 目录下找到这些文件。Paul E. McKenney 是内核中RCU源码的主要实现者,他也写了很多RCU方面的文章。他把这些文章和一些关于RCU的论文的链接整理到了一起。http://www2.rdrop.com/users/paulmck/RCU/ 在RCU的实现过程中,我们主要解决以下问题: 1,在读取过程中,另外一个线程删除了一个节点。删除线程可以把这个节点从链表中移除,但它不能直接销毁这个节点,必须等到所有的读取线程读取完成以后,才进行销毁操作。RCU中把这个过程称为宽限期(Grace period)。 2,在读取过程中,另外一个线程插入了一个新节点,而读线程读到了这个节点,那么需要保证读到的这个节点是完整的。这里涉及到了发布-订阅机制(Publish-Subscribe Mechanism)。 3, 保证读取链表的完整性。新增或者删除一个节点,不至于导致遍历一个链表从中间断开。但是RCU并不保证一定能读到新增的节点或者不读到要被删除的节点。 宽限期

02

Linux实时补丁即将合并进Linux 5.3

所谓实时,就是一个特定任务的执行时间必须是确定的,可预测的,并且在任何情况下都能保证任务的时限(最大执行时间限制)。实时又分软实时和硬实时,所谓软实时,就是对任务执行时限的要求不那么严苛,即使在一些情况下不能满足时限要求,也不会对系统本身产生致命影响,例如,媒体播放系统就是软实时的,它需要系统能够在1秒钟播放24帧,但是即使在一些严重负载的情况下不能在1秒钟内处理24帧,也是可以接受的。所谓硬实时,就是对任务的执行时限的要求非常严格,无论在什么情况下,任务的执行实现必须得到绝对保证,否则将产生灾难性后果,例如,飞行器自动驾驶和导航系统就是硬实时的,它必须要求系统能在限定的时限内完成特定的任务,否则将导致重大事故,如碰撞或爆炸等。

02
领券