Linux中设备驱动的分类 从上图可以看到Linux系统将各异的设备分为三大类:字符设备,块设备和网络设备。内核针对每一类设备都提供了对应驱动模型架构,包括基本的内核设施和文件系统接口。 主设备号用来标识对于的设备驱动程序,而次设备号则由驱动程序使用,用来标识它所管理的若干同类设备。 设备号的表示 在linux系统中,设备号用dev_t表示。这是个32位的无符号整数。 随着Linux系统的演变,上述的主次设备号的分发可能在将来会发生变化,所以设备驱动程序开发者应该避免直接使用主次设备号所占的位宽来获得对于的主设备号或次设备号。 假设在内核版本之后对主次设备号所占的位数发生了变化,MINORBITS修改为18位,只要驱动是使用MAJOR和MINOR宏来操作设备号,就不需要修改驱动代码也可以在新内核中使用。 ,第一个参数form表示一个设备号,第二个参数count表示次设备的个数,也就是当前驱动程序所管理的同类设备的个数,第三个参数name表示设备或者驱动的名称。
在Linux设备驱动之字符设备(一)中学习了设备号的构成,设备号的申请与释放。在Linux设备驱动之字符设备(二)中学习了如何创建一个字符设备,初始化,已经注册到系统中和最后释放该字符设备。 本节将结合前两节学到的知道,编写一个简单的字符设备驱动。最后总结一下字符设备驱动的模型。 字符设备驱动程序源码 #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/ 237,所以下一步就是根据主设备号创建设备节点。 字符设备驱动模型
代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!
通过上一节Linux设备驱动字符设备(一)了解了Linux设备驱动的分类,设备号的构成,设备号的申请以及设备号的释放。 在Linux内核中使用struct cdev结构来代码字符设备。 struct kobject kobj 内核的内嵌对象,是Linux设备驱动模型的重要成员。 struct module *owner 字符设备驱动程序所在的内核模块指针 struct file_operations *ops 字符设备驱动程序文件操作函数集,是应用程序通过文件系统访问驱动的桥梁 该部分在后面Linux字符设备框架一节会详细分析,目前只要明白主要流程即可。 字符设备的注销 当驱动程序需要从系统卸载的时候,就需要使用cdev_del释放字符设备占用的内存。 目前为止,已经了解了设备号,设备号的构成,字符设备分配,字符设备的初始化,字符设备的注册以及字符设备的注销。将在下一节通过一个简单的字符设备驱动程序来再次熟悉整个流程,然后总结字符设备驱动的编写模型。
inline int device_init_wakeup(struct device *dev, bool val) { device_set_wakeup_capable(dev, val); //设置设备能不能被唤醒 device_set_wakeup_enable(dev, val); //设置设备使不使用唤醒; return 0; } // 设备模型中的 所有设备 都有两个标志来控制 唤醒事件(可使得设备或系统退出低功耗状态 ,设备驱动为了支持linux中的电源管理,有责任调用device_init_wakeup()来初始化can_wakeup。 而should_wakeup则是在设备的 电源状态发生变化时 被device_may_wakeup()用来测试,测试它该不该变化。 can_wakeup,标识本设备是否具有唤醒能力。 只有具备唤醒能力的设备,才会在sysfs中有一个power目录,用于提供所有的wakeup信息。
Linux设备驱动概述 操作系统内核是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备。 设备驱动程序是操作系统内核和机器硬件之间的接口,系统调用是操作系统内核和应用程序之间的接口。 linux如何管理文件 Linux把设备纳入文件系统的范畴来管理。 每个设备在Linux系统上看起来都像一个文件,它们存放在/dev目录中,称为"设备节点"。 Linux下设备的属性 设备的类型:字符设备、块设备、网络设备; 主设备号:标识设备对应的驱动程序。 一般“一个主设备号对应一个驱动程序” 次设备号:每个驱动程序负责管理它所驱动的几个硬件实例,这些硬件实例则由次设备号来表示。同一驱动下的实例编号,用于确定设备文件所指的设备。 文件名:设备文件名字。 一些重要的数据结构 大部分驱动程序涉及三个重要的内核数据结构: 文件操作file_operations结构体 - 结构体file_operations在头文件 linux/fs.h中定义,用来存储驱动内核模块提供的对设备进行各种操作的函数的指针
很明显,根据设备的接口,我们可以知道分为usb设备,串口设备,pci设备,spi设备,i2c设备等等,那么在linux内核中又有样的划分呢? 下面所述就是linux中对所有设备的一个分类,并描述了相互之间的简单区别。 linux中设备和模块的分类: 字符设备:字符设备是能够像字节流(类似文件)一样被访问的设备,有字符设备驱动程序来实现这种特性。 linux可以让应用程序向字符设备一样读写块设备,允许一次传递任意多字节的数据。 Linux下的磁盘设备都是块设备,尽管在Linux下有块设备节点,但应用程序一般是通过文件系统及其高速缓存来访问块设备的,而不是直接通过设备节点来读写块设备上的数据。
#include <linux/module.h> #include <linux/kernel.h> #include <linux/kobject.h> #include <linux/sysfs.h > #include <linux/init.h> #include <linux/file.h> #include <linux/fs.h> static struct kobject kobj; 这样的test文件来自于上述属性的设置。 = size; kn->ns = ns; kn->priv = priv; ....... } 至此,这是注册一个sys文件的准备工作。 it */ if (name) { pr_debug("kobject: '%s': free name\n", name); kfree(name); } } 所以基于上述的执行路径,在驱动的
前言 Linux将所有的设备统一抽象为struct device结构, 同时将所有的驱动统一抽象为struct device_driver结构。 这样设计之后就方便驱动开发工程师编写驱动,只需要将具体的设备包含struct device结构,具体的驱动包含struct device_driver结构。 数据结构 Linux将所有的设备统一抽象为struct device结构。 C: 关于总线先设备与驱动的匹配是设备驱动模型的核心 void bus_probe_device(struct device *dev) { struct bus_type *bus = dev-> ,最终会调用到设备的show和store函数中,具体的流程分析可见Linux设备驱动模型-Ktype static ssize_t dev_attr_show(struct kobject *kobj
coresight cpu event_source hid i2c iio mdio_bus mmc platform scsi sdio serio spi usb virtio workqueue 数据结构 linux return NULL; retval = kobject_set_name(&kset->kobj, "%s", name); //设置 retval) { kfree(kset); return NULL; } kset->uevent_ops = uevent_ops; //设置 uevent_ops kset->kobj.parent = parent_kobj; //设置parent /* * The kobject of free it when it is * finished being used. */ kset->kobj.ktype = &kset_ktype; //设置
图1-1 声音的录音和播放过程 数据结构 在ALSA架构下,pcm也被称为设备,所谓的逻辑设备。在linux系统中使用snd_pcm结构表示一个pcm设备。 pcm设备的创建 创建一个pcm设备的实例,使用snd_pcm_new函数。 调用snd_kernel_minor函数获得设备的此设备号。该此设备号已经存在则返回BUSY,小于返回错误。 4. 应用到驱动的过程 当应用程序在通过open系统调用打开/dev/pcmC0D0c的过程 1. if ((err = substream->ops->open(substream)) < 0) 至此,整个pcm设备创建,调用,以及应用到驱动整个流程分析完毕。:)
Kobject是linux设备驱动模型的基础,也是设备模型中抽象的一部分。如果想了解设备驱动模型就需要明白Kobject的构成或原理。 linux内核为了兼容各种形形色色的设备,就需要对各种设备的共性进行抽象,抽象出一个基类,其余的设备只需要继承此基类就可以了。 而此基类就是kobject,但是C语言没有面向对象语法,这时候就需要将此基类(Kobject)嵌入到具体的结构体中,从而就可以访问控制此设备的操作。 #include <linux/module.h> #include <linux/kernel.h> #include <linux/kobject.h> #include <linux/sysfs.h #include <linux/kernel.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <linux/init.h>
前言 当一个设备动态的加入到系统时候(比如常见的将U盘插入到PC机器上), 设备驱动程序就需要动态的检测到有设备插入了系统,就需要将此事件通知到用户层,然后用户层对这一事件做响应的处理,比如加载USB驱动 Linux系统对uevent机制的具体实现是建立在设备模型的基础上的,通过kobject_uevent函数实现。 在前面的kset小节中提到了注册一个kset的接口,可以在这里习复下。 } /* originating subsystem */ if (uevent_ops && uevent_ops->name) //通过name函数设置 如果是嵌入式设备,会在etc目录下看到这样的配置: echo /sbin/mdev >/proc/sys/kernel/hotplug /sbin/mdev -s 也就是说uevent_helper最终调用到 在开是调用userhelper之前的准备工作。
前言 linux将所有的驱动抽象为struct device_driver结构。这样设计可以方便驱动程序更好编写,在编写驱动的时候只需要将此结构嵌入到具体的驱动中即可。 bus: 设备驱动所属的总线 owner: 设备驱动的owner,通常为THIS_MODULE suppress_bind_attrs: 通过sysfs操作设备驱动的bind/unbind, probe,remove: 当设备匹配/移除的时候,会调用设备驱动的probe/remove函数。 shutdown,suspend, resume: 代表设备驱动在调用管理的时候的回调函数。 groups: 设备驱动的属性。 p: 设备驱动的私有数据结构,通常可以将驱动的信息放入此结构中。 和设备一样,内核也为设备驱动定义了一些驱动的宏属性,方便定义驱动属性。
前言 在linux设备驱动模型中,总线可以看作是linux设备模型的核心,系统中的其他设备以及驱动都是以总线为核心围绕。不过驱动程序员在系统中创建一条总线的机会并不多。 为此linux设备驱动模型都将围绕"总线--设备--驱动"来展开,因为符合linux设备驱动模型的设备与驱动都是必须挂载在一个总线上的,无论是实际存在的或者虚拟的。 .dev_attrs: 此bus设备上默认的属性。 .bus_groups, dev_groups, drv_groups: 分别是总线, 设备,驱动的属性。 .match: 当一个设备或者驱动添加到此总线上的时候,bus就会调用match对设备和驱动一一匹配的。 p: 一个用来管理总线上设备与驱动的数据结构。
3、扇区 硬盘的基本访问单位,扇区的大小一般是512B(对于现在的有些磁盘的扇区>512B,比如光盘的一个扇区就是2048B,Linux将其看成4个扇区,无非就是需要完成4次的读写)。 Linux系统一次读取磁盘的大小是一个块,而不是一个扇区,块设备驱动由此得名。 二、块设备处理过程 1、linux 内核中,块设备将数据存储与固定的大小的块中,每个块都有自己的固定地址。 Linux内核中块设备和其他模块的关系如下。 ? 1、块设备的处理过程涉及Linux内核中的很多模块,下面简单描述之间的处理过过程。 <linux 块设备驱动架构图> ? (Linux系统中,对块设备的IO请求,都会向块设备驱动发出一个请求,在驱动中用request结构体描述) 内核结构如下:. struct request { struct list_head queuelist
/******************** * 字符设备驱动 ********************/ (1)字符设备驱动介绍 字符设备是指那些按字节流访问的设备,针对字符设备的驱动称为字符设备驱动 设备通过设备号来标识。设备号分两部分,主设备号和次设备号。 通常,主设备号标示设备对应的驱动程序,linux允许多个驱动共用一个主设备号; 而次设备号用于确定设备文件所指的设备。 在驱动中访问设备号应该用<linux/kdev_t.h>中定义的宏。 (mi)) //根据指定的主设备和次设备号生成设备号 #include <linux/fs.h> //静态:申请指定的设备号, from指设备号, count指使用该驱动有多少个设备(次设备号 /devices.txt可查看设备号的静态分配情况 ///内核里使用struct cdev来描述一个字符设备驱动 #include <linux/cdev.h> struct cdev { struct
Linux内核版本: 3.5 一、块设备介绍 块是一种具有一定结构的随机存取设备,对这种设备的读写是按块进行的,他使用缓冲区来存放暂时的数据,待条件成熟后,从缓存一次性写入设备或者从设备一次性读到缓冲区 块设备是与字符设备并列的概念, 这两类设备在 Linux 中驱动的结构有较大差异,总体而言, 块设备驱动比字符设备驱动要复杂得多,在 I/O 操作上表现出极大的不同,缓冲、 I/O 调度、请求队列等都是与块设备驱动相关的概念 在Linux中,驱动对块设备的输入或输出(I/O)操作,都会向块设备发出一个请求,在驱动中用request结构体描述。 编写块设备驱动时,使用的一些单位介绍: 1. 扇区(Sectors):任何块设备硬件对数据处理的基本单位。通常,1个扇区的大小为512字节。(对设备而言) 2. 如果需要访问外部硬件,比如: 光盘、磁盘等外部物理设备时,要设置默认的调度器,可以调用blk_init_queue函数分配请求队列。
上一篇我们大概聊了如何写一个简单的字符设备驱动,我们不是神,写代码肯定会出现问题,我们需要在编写代码的过程中不断调试。 下面就根据一个简单的实例来说明如何调试驱动程序。 如何根据oops定位代码行 我们借用linux设备驱动第二篇:构造和运行模块里面的hello world程序来演示出错的情况,含有错误代码的hello world如下: #include <linux/ 以上就是通过oops信息来定位驱动崩溃的行号。 printk的使用方法类似printf,只是要注意一下打印级别,详细介绍在linux设备驱动第二篇:构造和运行模块中已有描述,另外需要注意的是大量使用printk会严重拖慢系统,所以使用过程中也要注意。
一个开发板 上一节的最后我们讲到设备树的三大作用,其最后一个作用也是最重要的作用:设备信息集合。这一节结合设备信息集合的详细讲解来认识一下设备和驱动是如何绑定的。 我们看到一个开发板有很多的设备,这些设备是如何一层一层展开的呢?设备和驱动又是如何绑定的呢?我们带着这些疑问进入本节的主题。 各级设备的展开 内核启动的时候是一层一层展开地去寻找设备,设备树之所以叫设备树也是因为设备在内核中的结构就像树一样,从根部一层一层的向外展开,为了更形象的理解来看一张图: ? 第一节中讲了总线、设备和驱动模型的原理,即任何驱动都是通过对应的总线和设备发生联系的,故虽然 soc 内部没有具体的总线,但是内核通过 platform 这条虚拟总线,把控制器一个一个找到,一样遵循了内核高内聚 下面我们按照 platform 设备、i2c 设备、spi 设备的顺序探究设备是如何一层一层展开的。
物联网设备身份认证(IoT TID)为客户提供多安全等级、跨平台、资源占用少的物联网设备身份认证服务。通过控制台全流程可视化配置,帮助客户快速对接 TID 设备身份认证服务,全面提升各种物联网设备接入认证与数据的安全性……
扫码关注云+社区
领取腾讯云代金券