首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

linux之用户空间和内核空间

linux驱动程序一般工作在内核空间,但也可以工作在用户空间。下面我们将详细解析,什么是内核空间,什么是用户空间,以及如何判断他们。 Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地址空间也为0~4G。Linux内核将这4G字节的空间分为两部分。将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为“内核空间”。而将较低的3G字节(从虚拟地址 0x00000000到0xBFFFFFFF),供各个进程使用,称为“用户空间)。因为每个进程可以通过系统调用进入内核,因此,Linux内核由系统内的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间。 Linux使用两级保护机制:0级供内核使用,3级供用户程序使用。从图中可以看出(这里无法表示图),每个进程有各自的私有用户空间(0~3G),这个空间对系统中的其他进程是不可见的。最高的1GB字节虚拟内核空间则为所有进程以及内核所共享。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中。 虽然内核空间占据了每个虚拟空间中的最高1GB字节,但映射到物理内存却总是从最低地址(0x00000000)开始。对内核空间来说,其地址映射是很简单的线性映射,0xC0000000就是物理地址与线性地址之间的位移量,在Linux代码中就叫做PAGE_OFFSET。 内核空间和用户空间之间如何进行通讯? 内核空间和用户空间一般通过系统调用进行通信。 如何判断一个驱动是用户模式驱动还是内核模式驱动? 判断的标准是什么? 用户空间模式的驱动一般通过系统调用来完成对硬件的访问,如通过系统调用将驱动的io空间映射到用户空间等。因此,主要的判断依据就是系统调用。 内核空间和用户空间上不同太多了,说不完,比如用户态的链表和内核链表不一样;用户态用printf,内核态用printk;用户态每个应用程序空间是虚拟的,相对独立的,内核态中却不是独立的,所以编程要非常小心。等等。 还有用户态和内核态程序通讯的方法很多,不单单是系统调用,实际上系统调用是个不好的选择,因为需要系统调用号,这个需要统一分配。 可以通过ioctl、sysfs、proc等来完成。

02

拒绝造轮子!如何移植并使用Linux内核的通用链表(附完整代码实现)

链表是一种常用的组织有序数据的数据结构,它通过指针将一系列数据节点连接成一条数据链,是线性表的一种重要实现方式。相对于数组,链表具有更好的动态性,建立链表时无需预先知道数据总量,可以随机分配空间,可以高效地在链表中的任意位置实时插入或删除数据。   通常链表数据结构至少应包含两个域:数据域和指针域,数据域用于存储数据,指针域用于建立与下一个节点的联系。按照指针域的组织以及各个节点之间的联系形式,链表又可以分为单链表、双链表、循环链表等多种类型,下面分别给出这几类常见链表类型的示意图:

02

算法与数据结构之十----内核中的链表操作学习

/**************************************************************** 文件内容:内核之链队操作 版本V1.0 作者:HFL 时间:2013-12-22 说明:用户态中链表每个节点包含数据域和指针域,而内核态是每个数据中包含链表 因此内核态链表一般是嵌套在某个包含数据成员的结构体来实现。 内核的链表应用非常广泛:进程管理,定时器,工作队列,运行队列。总之 内核对于多个数据的组织和多个熟悉的描述都是通过链表串起来的。  *****************************************************************/  #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> MODULE_DESCRIPTION("My Module"); MODULE_ALIAS("My module"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("HFL21014"); struct student {     char name[100];     int counter;     struct list_head list; }; struct student *Mystudent; struct student *Temp_student; struct list_head student_list; struct list_head *pos; int Kernel_list_init() { int j = 0; INIT_LIST_HEAD(&student_list); Mystudent = kmalloc(sizeof(struct student)*5,GFP_KERNEL); memset(Mystudent,0,sizeof(struct student)*5); for(j=0;j<5;j++) {        sprintf(Mystudent[i].name,"Student%d",j+1);       Mystudent[j].counter = j+1;      list_add( &(Mystudent[j].list), &student_list); }  list_for_each(pos,&student_list) //遍历整个内核链表,pos其实就是一个for循环标量。中间临时使用,既不输入也不输出 { Temp_student = list_entry(pos,struct student,list);  printk("hello,my student %d  name: %s\n",Temp_student->counter,Temp_student->name); } return 0; } void Kernel_list_exit() { int k ; /* 模块卸载是要删除链表,并释放内存 */ for(k=0;k<10;jk++) { list_del(&(Mystudent[k].list));      } kfree(Mystudent); } module_init(Kernel_list_init);

03

Linux X86-ACPI PNP Hardware ID的识别框架

基于X86架构的Linux内核,在移植驱动的过程中,发现GPIO和I2C的device ID添加到pnp驱动框架后无法进入probe函数,后面找了下原因,因为pnp遵循的是ACPI规范,是由于如下Hardware ID字段是需要从BIOS中进行描述的,而目前的驱动匹配不到对应的字段,自然就不可能注册成功了。 PNP是什么东西?不是三极管的那个PNP啦,这个PNP表示的是:Plug-and-Play,译文为即插即用。 PNP的作用是自动配置底层计算机中的板卡和其他设备,然后告诉对应设备都做了什么。PnP的任务是把物理设备和软件设备驱动程序相配合,并操作设备,在每个设备和它的驱动程序之间建立通信信道。然后,PnP分配下列资源给设备和硬件:I/O地址、IRQ、DMA通道和内存段。即插即用设备配置的控制权将从系统BIOS传递到系统软件,所以驱动中一定会有代码进行描述,到时可以跟一下这部分的代码深入了解一下。由于PNP遵循ACPI的规范,那么既然是规范,那肯定要照着做了,规范怎么说,那就怎么做。 以下是关于ACPI Spec中对Hardware ID的描述,描述如下:

04

双链表操作(一)

1、在引入双链表之前,我们先来回忆之前为什么要引入单链表介绍:它是解决的数组的数组的大小比较死板不容易扩展的问题;使用堆内存来存储数据,将数据分散到各个节点之间,其各个节点在内存中可以不相连,节点之间通过指针进行单向链接。链表中的各个节点内存不相连,有利于利用碎片化的内存。但是单链表各个节点之间只由一个指针单向链接,这样实现有一些局限性。局限性主要体现在单链表只能经由指针单向移动(一旦指针移动过某个节点就无法再回来,如果要再次操作这个节点除非从头指针开始再次遍历一次),因此单链表的某些操作就比较麻烦(算法比较有局限)。这里可以看我之前写的单链表操作文章结合一下,就能非常好理解单链表的局限性了。

03
领券