首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    nvcc简介

    nvcc编译分成device部分编译和host部分编译,host部分直接调用平台编译器进行编译Linux使用gcc,window使用cl.exe,这里主要讲解device部分的编译,此部分编译分两个阶段,第一阶段将源文件.cu文件的device部分编译成ptx文本指令,第二阶段将ptx文本指令编译成在真实架构上运行的二进制指令,第二阶段可能发生在生成可执行程序的过程中,也可能发生在运行可执行程序的过程中(just-in-time compilation)。在生成可执行程序的过程中可以根据nvcc选项选择是否将ptx文本指令(x.ptx中间文件中)、二进制指令(x.cubin中间文件)嵌入到可执行程序中,一般有3种嵌入方式:只嵌入x.ptx(第二阶段被忽略,全部依赖just-in-time compilation);只嵌入x.cubin(无法进行just-in-time compilation);两者都嵌入(运行过程中driver找到合适二进制指令镜像则加载之,否则进行just-in-time compilation再加载之)。

    03

    英伟达CUDA架构核心概念及入门示例

    理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。

    01

    使用腾讯云轻量应用服务器搭建网络质量拨测工具 SmokePing

    SmokePing 是由 RRDtool 的作者 Tobi Oetiker 开发的一款监控网络状态和稳定性的开源软件。SmokePing 会不断向目标发送各种类型的数据包,并对返回值进行测量和记录,通过 RRDtool 制图程序图形化地展示在各个时段内网络的延迟和丢包情况,帮助我们更清楚、更直观地了解监控机和监控目标之间短期和长期的网络状况。   腾讯云轻量应用服务器目前提供北京、广州、上海、南京、成都、中国香港、新加坡、东京、硅谷和莫斯科等10个地域的机器供用户购买。由于众所周知的原因,我国大陆地区的国际互联网出入口总带宽较小,在日常特别是晚高峰期间较为拥堵,因此在服务器上安装网络质量拨测工具用于监控和记录不同时段的服务器至国内方向测速节点和国际方向的终结点的延迟和丢包率,获取具有连续性的十分直观的数据以便我们进行分析非常有帮助。   本文以腾讯云轻量应用服务器香港地域为例,演示和教学网络质量拨测工具 SmokePing 的编译和个性化配置。

    02

    从零开始制作PyTorch的Singularity容器镜像

    在前面的博客中,我们大篇幅的使用到了Docker和Singularity这两种常见的容器化编程环境解决方案,使得我们的各个编程环境能够更好的隔离。如果要展开讲解容器化编程环境的重要性的话,我们有可能会发现容器并不是那么的必须:比如解决python库的依赖冲突问题,我们可以选择使用python的virtualenv或者conda的虚拟环境;比如解决gcc的版本依赖冲突,我们可以手动配置和选择对应的版本;比如对于我们没有root权限和对外网络的环境,想要安装一些工具可以采用源码编译安装。那么,这些种种的问题,如果我们采用Singularity的方案,就可以一次性的解决。而且容器化是一个趋势,比如各种的机器学习框架都会提供容器版本的安装方案,像MindSpore和Tensorflow等等。这里我们尝试使用Singularity的容器def文件(类似于Docker的Dockerfile,而且兼容Docker的镜像),去构造一个Pytorch专属的编程环境。

    01
    领券