首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

局部敏感哈希(Locality-Sensitive Hashing, LSH)

局部敏感哈希示意图(from: Piotr Indyk) LSH的基本思想是:将原始数据空间中的两个相邻数据点通过相同的映射或投影变换(projection)后,这两个数据点在新的数据空间中仍然相邻的概率很大,而不相邻的数据点被映射到同一个桶的概率很小。也就是说,如果我们对原始数据进行一些hash映射后,我们希望原先相邻的两个数据能够被hash到相同的桶内,具有相同的桶号。对原始数据集合中所有的数据都进行hash映射后,我们就得到了一个hash table,这些原始数据集被分散到了hash table的桶内,每个桶会落入一些原始数据,属于同一个桶内的数据就有很大可能是相邻的,当然也存在不相邻的数据被hash到了同一个桶内。因此,如果我们能够找到这样一些hash functions,使得经过它们的哈希映射变换后,原始空间中相邻的数据落入相同的桶内的话,那么我们在该数据集合中进行近邻查找就变得容易了,我们只需要将查询数据进行哈希映射得到其桶号,然后取出该桶号对应桶内的所有数据,再进行线性匹配即可查找到与查询数据相邻的数据。换句话说,我们通过hash function映射变换操作,将原始数据集合分成了多个子集合,而每个子集合中的数据间是相邻的且该子集合中的元素个数较小,因此将一个在超大集合内查找相邻元素的问题转化为了在一个很小的集合内查找相邻元素的问题,显然计算量下降了很多。 那具有怎样特点的hash functions才能够使得原本相邻的两个数据点经过hash变换后会落入相同的桶内?这些hash function需要满足以下两个条件: 1)如果d(x,y) ≤ d1, 则h(x) = h(y)的概率至少为p1; 2)如果d(x,y) ≥ d2, 则h(x) = h(y)的概率至多为p2; 其中d(x,y)表示x和y之间的距离,d1 < d2, h(x)和h(y)分别表示对x和y进行hash变换。 满足以上两个条件的hash functions称为(d1,d2,p1,p2)-sensitive。而通过一个或多个(d1,d2,p1,p2)-sensitive的hash function对原始数据集合进行hashing生成一个或多个hash table的过程称为Locality-sensitive Hashing。 使用LSH进行对海量数据建立索引(Hash table)并通过索引来进行近似最近邻查找的过程如下: 1. 离线建立索引 (1)选取满足(d1,d2,p1,p2)-sensitive的LSH hash functions; (2)根据对查找结果的准确率(即相邻的数据被查找到的概率)确定hash table的个数L,每个table内的hash functions的个数K,以及跟LSH hash function自身有关的参数; (3)将所有数据经过LSH hash function哈希到相应的桶内,构成了一个或多个hash table; 2. 在线查找 (1)将查询数据经过LSH hash function哈希得到相应的桶号; (2)将桶号中对应的数据取出;(为了保证查找速度,通常只需要取出前2L个数据即可); (3)计算查询数据与这2L个数据之间的相似度或距离,返回最近邻的数据; LSH在线查找时间由两个部分组成: (1)通过LSH hash functions计算hash值(桶号)的时间;(2)将查询数据与桶内的数据进行比较计算的时间。因此,LSH的查找时间至少是一个sublinear时间。为什么是“至少”?因为我们可以通过对桶内的属于建立索引来加快匹配速度,这时第(2)部分的耗时就从O(N)变成了O(logN)或O(1)(取决于采用的索引方法)。 LSH为我们提供了一种在海量的高维数据集中查找与查询数据点(query data point)近似最相邻的某个或某些数据点。需要注意的是,LSH并不能保证一定能够查找到与query data point最相邻的数据,而是减少需要匹配的数据点个数的同时保证查找到最近邻的数据点的概率很大。 二、LSH的应用 LSH的应用场景很多,凡是需要进行大量数据之间的相似度(或距离)计算的地方都可以使用LSH来加快查找匹配速度,下面列举一些应用: (1)查找网络上的重复网页 互联网上由于各式各样的原因(例如转载、抄袭等)会存在很多重复的网页,因此为了提高搜索引擎的检索质量或避免重复建立索引,需要查找出重复的网页,以便进行一些处理。其大致的过程如下:将互联网的文档用一个集合或词袋向量来表征,然后通过一些hash运算来判断两篇文档之间的相似度,常用的有minhash+LSH、simhash。 (2)查找相似新闻网页或文章 与查找重复网页类似,可以通过hash的方法来判断两篇新闻网页或文章是否相

03

使用 Spark, LSH 和 TensorFlow 检测图片相似性

作为一个视觉数据处理平台,拥有从海量图片中学习并理解其内容的能力是非常重要的。为了检测几近重复的相似图片,我们使用了一套基于 Spark 和 TensorFlow 的数据流处理系统——NearDup。这套系统的核心由一个使用 Spark 实现的批量化 LSH(locality-sensitive hashing,局部敏感哈希)搜索器和一个基于 TensorFlow 的分类器构成。这个数据流处理系统每天能够比较上亿个分析对象,并渐进式地完成各个图像类别的信息更新。在本文中,我们将讲解如何使用这项技术更好地理解海量图片内容,从而使得我们产品前端界面的推荐内容和搜索结果具有更高的信息准确性、更大的数据密度。

02

bzoj 4399: 魔法少女LJJ 题解

在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了 LJJ感叹道“这里真是个迷人的绿色世界,空气清新、淡雅,到处散发着醉人的奶浆味;小猴在枝头悠来荡去,好不自在;各式各样的鲜花争相开放,各种树枝的枝头挂满沉甸甸的野果;鸟儿的歌声婉转动听,小河里飘着落下的花瓣真是人间仙境” SHY觉得LJJ还是太naive,一天,SHY带着自己心爱的图找到LJJ,对LJJ说:“既然你已经见识过动态树,动态仙人掌了,那么今天就来见识一下动态图吧” LJJ:“要支持什么操作?” SHY:“ 1.新建一个节点,权值为x。 2.连接两个节点。 3.将一个节点a所属于的联通快内权值小于x的所有节点权值变成x。 4.将一个节点a所属于的联通快内权值大于x的所有节点权值变成x。 5.询问一个节点a所属于的联通块内的第k小的权值是多少。 6.询问一个节点a所属联通快内所有节点权值之积与另一个节点b所属联通快内所有节点权值之积的大小。 7.询问a所在联通快内节点的数量 8.若两个节点a,b直接相连,将这条边断开。 9.若节点a存在,将这个点删去。” LJJ:“我可以离线吗?” SHY:“可以,每次操作是不加密的,” LJJ:“我可以暴力吗?” SHY:“自重” LJJ很郁闷,你能帮帮他吗

03

面向最小哈希签名的LSH

我们知道最小哈希签名能够把一篇较大的文档压缩成一个较短的签名并且不影响文档间的Jaccard相似度。很多情况下,我们用最小哈希签名的目的就是为了方便的对文档进行存储,并且对于给定的文档,能在大量的文档中快速的查找相似的文章。现在我们能做到快速的对两篇文章进行相似度比较,但是当总的文档数目比较大的时候,比较所有文档的最小哈希签名仍然是一个非常耗时耗力的事。而我们知道,对于给定的文档而言,文档库中的绝大多数文档其实都没有比较的意义,如果能有一个方法能过滤掉不需要比较的大量文档,那么显然就能加快整个查找的过程。这个思路其实可以称为"Filter and Refine","先过滤,后提纯"。而实现这个的方法,就是LSH(Locality-Sensitive Hashing 局部敏感哈希)。

02

Reformer: 高效的Transformer

理解序列数据 —— 如语言、音乐或视频 —— 是一项具有挑战性的任务,特别是当它依赖于大量的周围环境时。例如,如果一个人或一个物体在视频中消失,很久以后又重新出现,许多模型就会忘记它的样子。在语言领域,长短时记忆(LSTM)神经网络覆盖了足够的上下文来逐句翻译。在这种情况下,上下文窗口(在翻译过程中需要考虑的数据范围),从几十个词到大约 100 个词不等。最新的 Transformer 模型不仅改进了逐句翻译的性能,还可以通过多文档摘要生成整个 Wikipedia 的文章。这是可能的,因为 Transformer 使用的上下文窗口可以扩展到数千个单词。有了这样一个大的上下文窗口,Transformer 可以用于文本以外的应用,包括像素或音符,使其能够用于生成音乐和图像。

01
领券