首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    设置TinyML实验Arduino环境

    最近在学习edx的HarvardX TinyML 3 - deploying TinyML。这个在线课程大大降低了TinyML的学习曲线的陡峭度,可以作为《TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers》的有益补充。原书是TensorFlow-Lite-Micro相关设计的提纲挈领,但是成书到发行期间,TFLM一直也在发展中,书中的代码到实践时候就有差异;《TinyML》也没有把实践部署讲的很透彻,个人认为在于TFLM采用工业化的pipeline解决依赖(不同硬件平台的编译、库、工具链的依赖);《TinyML》在阐述硬件平台移植相关章节,没有把工具链从官方的工业pipeline完整的剥离出来,也导致了光看书无法复现。为什么敢这么说?徒手把TFLM移植到nrf52840的淘宝开发板上,书忽略了nrf平台工具链的构建,以及如何和tf编译系统联动的设计。工作原因没有精力继续TinyML的爱好了。Harvard在线课程给了个契机继续,毕竟看视频比看code和实操要省力好多。

    07

    SELMA3D2024——3D光片显微镜图像自监督分割

    在现代生物学研究领域,可视化和理解组织和生物体内复杂结构的能力至关重要。经过组织透明化和特定结构染色后的光片显微镜 (LSM) 提供了一种高效、高对比度和超高分辨率的方法,可用于可视化各种样本中的各种生物结构,例如细胞和亚细胞结构、细胞器和过程。在组织透明化步骤中,在保持样本完整性和标记结构荧光的同时,原本不透明的生物样本变得透明,从而使光线能够更深入地穿透组织。在结构染色步骤中,可以使用各种染料、荧光团或抗体来选择性地标记样本内的特定生物结构并增强其在显微镜下的对比度。通过与结构染色和组织透明化步骤相结合,LSM 为研究人员提供了前所未有的能力,能够以高空间分辨率可视化复杂的生物结构,为神经科学、免疫学、肿瘤学和心脏病学等各种生物医学研究领域提供新的见解。在不同的生物医学研究领域中,为了分析 LSM 图像,分割在识别和区分不同的生物结构方面起着关键且必不可少的作用。对于非常小规模的 LSM 图像,可以手动进行图像分割。然而,在整个器官或身体 LSM 情况下,手动分割非常耗时,单个图像可能有 10000^3 体素,因此对自动分割方法的需求很高。基于深度学习的分割方法的最新进展为 LSM 图像的自动分割提供了有希望的解决方案。虽然这些方法的分割性能与专家人类注释者相当,但它们的成功很大程度上依赖于从大量手动注释图像训练集中进行监督学习,这些图像特定于一种结构染色。然而,对各种 LSM 图像分割任务进行大规模注释提出了巨大的挑战。在这种情况下,自监督学习被证明是有利的,因为它允许深度学习模型在大规模、未注释的数据集上进行预训练,学习 LSM 图像数据的有用和通用表示。随后,该模型可以在较小的标记数据集上进行微调,以完成特定的分割任务。值得注意的是,尽管存在大量不同生物结构的 LSM 数据,但自监督学习尚未在 LSM 领域得到广泛探索。LSM 图像的一些特性(例如高信噪比)使数据特别适合自监督学习。

    01
    领券