首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

实现MapReduce

最近在学MIT6.824分布式系统课程,第一个Lab就是MapReduce,MapReduce是Google公司2004年发表的一篇论文,介绍很多任务都可以分为两步操作——Map和Reduce(比如要统计词频...论文中还讲述了MapReduce分布式系统的实现细节以及应用场景。本文将以MIT6.824课程的Lab1为例,讲述如何完成MapReduce Lab1以及实现过程中遇到一些的困难。...mr文件夹,这个是MapReduce主要实现代码,工作量就在这了 mrapps是不同任务的Map和Reduce函数包,这个不需要管 系统框架一览 MapReduce系统是由一个master进程和多个worker...我根据代码函数调用逻辑画出了一个系统框图,可以更好的理解MapReduce系统的工作原理: ? 代码详解 根据上面的系统框图,现在来从代码中理解系统。...结语 MapReduce介绍就到这了,推荐自己尝试实现一遍,收获还是很大的,包括mapreduce细节实现,更加熟悉Go,分布式调试(可以看看这个commit下的代码,没有删减打印,可以清楚看输出,特别是

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Hadoop - MapReduce

    MapReduce是什么? MapReduce是基于java的分布式计算程序模型和处理技术。 MapReduce算法包含两个重要的任务,即Map和Reduce。...就像MapReduce的名字所暗示的那样,reduce任务总是在map之后执行。 MapReduce的主要优势是,它很容易在多个计算节点上作大规模的数据处理。...但是,一旦我们以MapReduce形式编写应用程序,那么扩展应用程序,让它运行在成百上千,甚至上万的机器集群中只是一个修改配置的问题。 正是这一点可伸缩性吸引了许多程序员使用MapReduce模型。...算法 通常MapReduce范例基于将计算实体发送到数据所在的地方。 MapReduce程序执行分三个阶段,即map阶段, shuffle阶段,和reduce阶段。...为了解决这些问题,我们需要MapReduce框架。

    1K80

    MapReduce解读

    MapReduce 分布式系统系列     MapReduce,学习分布式系统必读的经典佳作,写在本系列的开篇。...---- MapReduce抽象模型及Examples     这种计算方式以一个键/值对集合作为输入,产生一个键/值对作为输出。...用户的MapReduce库将计算表达为两个函数: Map和Reduce     Map函数,由用户编写,采用一个输入对然后产生一个中间键/值对集合。...中间值通过迭代器提供给用户的Reduce函数,这允许我们处理太大而不适合内存的值列表 MapReduce抽象视图 MapReduce APImap(k1, v1) -> list(k2, v2)reduce...,即使没有任何分布式和并行编程经验的程序员也容易上手; 第二,很多问题容易被MapReduce模型表示; 第三,已实现MapReduce模型(e.g.

    1K00

    MapReduce排序

    一、MapReduce排序概述MapReduce排序是一种常用的数据排序算法,它将数据划分为若干个分区,并将每个分区内的数据排序。最终,将每个分区内排好序的数据合并成一个有序的输出结果。...在MapReduce中,排序通常用于数据预处理、数据统计和数据挖掘等领域。MapReduce排序的过程包括两个阶段:排序阶段和合并阶段。...在排序阶段,MapReduce框架会对每个分区内的数据进行排序,使用的排序算法通常是快速排序或归并排序。在合并阶段,MapReduce框架会将每个分区内排好序的数据进行合并,生成最终的有序输出结果。...三、MapReduce排序优化MapReduce排序算法的性能取决于多个因素,例如数据分布、数据大小、计算资源等。...下面是一些优化MapReduce排序算法的方法:使用Combiner在MapReduce中,Combiner可以在Map阶段的输出数据进行本地聚合,以减少网络传输的数据量,从而提高MapReduce的性能

    50320

    MapReduce概述

    MapReduce是一种用于处理大型数据集的分布式计算框架。它是由Google提出的一种计算模型,被广泛应用于Apache Hadoop等大数据处理框架中。...MapReduce的工作原理 MapReduce将数据处理分为两个主要阶段:Map阶段和Reduce阶段。...MapReduce的应用场景 MapReduce被广泛应用于处理大型数据集,尤其是非结构化和半结构化数据。它适用于许多场景,包括数据挖掘、日志分析、图像处理、自然语言处理等。...MapReduce还可用于构建分布式搜索引擎、机器学习和深度学习等大规模计算应用程序。MapReduce的示例 下面是一个简单的MapReduce示例,它计算给定文本文件中每个单词的出现次数。...reduceFunction(word, counts): total = 0 for count in counts: total += count return (word, total)主程序 主程序负责驱动MapReduce

    58340

    MapReduce快速入门系列(1) | 什么是MapReduce

    随着HDFS系列的完结,下面就到了MapReduce系列了,很荣幸各位小伙伴们能够继续一如既往的观看博主的博文。 1. MapReduce的核心思想 MapReduce思想在生活中处处可见。...这两个阶段合起来正是MapReduce思想的体现。 ? 上图为:MapReduce思想模型 还有一个比较形象的语言解释MapReduce:   我们要数图书馆中的所有书。...MapReduce设计构思 MapReduce是一个分布式运算程序的编程框架,核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在Hadoop集群上。...对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,降低了开发并行应用的入门门槛。 MapReduce构思体现在如下的三个方面: 1....通过以上两个编程接口,大家可以看出MapReduce处理的数据类型是键值对。 3.

    53920

    MapReduce 论文

    简介 2004 年发表了 MapReduce 的论文,是一个分布式计算的框架。...当你仔细了解 MapReduce 的框架之后,你会发现 MapReduce 的设计哲学和 Unix 是一样的,叫做“Do one thing, and do it well”,也就是每个模块只做一件事情...数据处理 作为一个框架,MapReduce 设计的一个重要思想,就是让使用者意识不到“分布式”这件事情本身的存在。从设计模式的角度,MapReduce 框架用了一个经典的设计模式,就是模版方法模式。...而从设计思想的角度,MapReduce 的整个流程,类似于 Unix 下一个个命令通过管道把数据处理流程串接起来。 MapReduce 的数据处理设计很直观,并不难理解。...还有一点也和 GFS 一样,MapReduce 论文发表时的硬件,用的往往是 100MB 或者 1GB 的网络带宽。所以 MapReduce 框架对于这一点,就做了不少性能优化动作。

    19310

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券