⓪ L2范数,欧几里得距离 欧几里得轮廓 用于数值属性或特征的最常见距离函数是欧几里得距离,其定义在以下公式中: n 维空间中两点之间的欧几里德距离 这个距离度量具有众所周知的特性,例如对称、可微 它等于直角三角形斜边的长度。 此外,欧几里得距离是一个度量,因为它满足其标准,如下图所示。 欧几里得距离满足成为度量的所有条件 此外,使用该公式计算的距离表示每对点之间的最小距离。 n维空间中两点之间的平方欧几里得距离 ② L1 范数、城市街区、曼哈顿或出租车距离 曼哈顿轮廓 该指标对于测量给定城市中两条街道之间的距离非常有用,可以根据分隔两个不同地方的街区数量来测量距离。 它被定义为 n维空间中两个观测值之间的距离,如以下公式所示: 其中 P、Q 是两个给定的 nD 点,p 代表 Minkowski 度量。 例如,它可用于衡量两个给定文档之间的相似性。它还可用于根据消息的长度识别垃圾邮件。 余弦距离可以按如下方式测量: 其中 P 和 Q 代表两个给定的点。
这里有个经验,就是最大(最小)观测值设置为与四分位数值间距离为1.5个IQR(中间四分位数极差)。即 1、IQR = Q3-Q1,即上四分位数与下四分位数之间的差,也就是盒子的长度。 2、最小观测值为min = Q1 - 1.5IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。 图片.png 数值属性的相异性 计算数值属性刻画的对象的相异性的距离度量包括欧几里得距离、曼哈顿距离和闵可夫斯基距离。 最流行的距离度量是欧几里得距离(即,直线或“乌鸦飞行”距离)。 令i=(xi1,xi2,…,xip)和j=(xj1,xj2,…,xjp)是两个被p个数值属性描述的对象。对象i和j之间的欧几里得距离定义为: ? 图片.png 另一个著名的度量方法是曼哈顿(或城市块)距离,之所以如此命名,是因为它是城市两点之间的街区距离(如,向南2个街区,横过3个街区,共计5个街区)。其定义如下: ?
个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。
我们都知道一幅图片就相当于一个二维数组,可以用一个矩阵来表示,而MATLAB可以说就是为矩阵运算而生的,所以学习图像处理,学习MATLAB势在必行! 一、 MATLAB基础知识 1. imshow(f, [low high]),这里会将所有小于或等于low的值都显示为黑色,所有大于或等于high的值都显示为白色。介于low和high之间的值将以默认的级数显示为中等亮度值。 最后imshow(f,[ ])可以将变量low设置为数组f的最小值,将变量high设置为数组f的最大值。函数imshow的这一形式可以显示一幅动态范围较小的图像既有正值又有负值的图像。 函数pixval经常用来交互地显示单个像素的亮度值。该函数可以显示覆盖在图像上的光标。当光标随着鼠标在图像上移动时,光标所在位置的坐标和该点的亮度值会在窗口下方显示出来。 处理彩色图像时,红、绿、蓝分量的坐标也会显示出来。若按住鼠标左键不放,则pixval将显示光标初始位置和当前位置间的欧几里得距离。 使用figure函数,可以同时显示两幅图片 ?
在图像中识别出人物并在人物上标注矩形边界框,同时计算出矩形的中心坐标(质心),并标注其唯一ID。 构建一个简单的跟踪算法:计算上一帧图片质心和本帧质心之间的欧氏距离。 上图:三个人物的质心出现在这幅简单的图像中,我们需要计算每一对质心之间的欧几里得距离,颜色区分:上一帧(红色的)和本帧(黄色的);当上一帧和本帧质心之间距离小于最小安全距离,我们将构建人物跟踪,将人物ID 在上图中,可以看到我们的质心跟踪算法如何选择了关联质心,使它们各自的欧几里得距离最小化。但左下角的那个孤独点和什么都没有联系,我们就将它注册一个新的人物ID。
MaSIF利用几何深度学习来学习蛋白质分子表面中的相互作用指纹。分子表面数据是在测地空间中描述的,这意味着两点之间的距离对应于沿着表面的两点之间的“行走”距离。 MaSIF框架对于没有共同进化祖先的蛋白质之间寻找相似相互作用指纹的生物学家很有用。MaSIF代表了对欧几里得结构表示学习的偏离,并使人们认识到蛋白质功能和设计的重要结构特征。 相对于小块中心(图1c),这些坐标将有关特征之间的空间关系的信息添加到学习方法中。 3.3.1测地距离 在连续的表面上,测地线是在表面上“行走”时连接两个点的最短路径(曲线)。 两点之间的测地线距离是两点之间的测地线长度。在网格上,测地线是两个顶点之间最短的多段线。在图上,测地线是连接两个顶点的相邻图边的集合。网格上测地线的计算可以使用快速前进方法精确地或近似地计算。 对于每对点测量了MaSIFsearch指纹描述符的距离;3D空间中的欧几里得距离及其法线之间的点积。研究者网络的输入特征是:1 /(描述符距离)、1 /(欧几里德距离)和法线的点积。
最接近原点的K个点 我们有一个由平面上的点组成的列表points。需要从中找出K个距离原点(0, 0)最近的点。 (这里,平面上两点之间的距离是欧几里德距离。) 你可以按任何顺序返回答案。 除了点坐标的顺序之外,答案确保是唯一的。 示例 输入:points = [[1,3],[-2,2]], K = 1 输出:[[-2,2]] 解释: (1, 3) 和原点之间的距离为 sqrt(10), (-2, 2) 和原点之间的距离为 sqrt 个最大最小值的情况下使用大小顶堆效率会更高。 首先定义n为点的数量,当K取值大于等于点的数量直接将原数组返回即可,之后定义排序,将a点与b点的欧几里得距离的平方计算出并根据此值进行比较,排序结束后直接使用数组的slice方法对数组进行切片取出前K个值即可
在实数域中,数的大小和两个数之间的距离是通过绝对值来度量的。在解析几何中,向量的大小和两个向量之差的大小是“长度”和“距离”的概念来度量的。 2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。 ∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。 -∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。 P-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。 2-范数:,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。
动态时间扭曲(DTW)是基于距离的方法的一个示例。 图 — 基于距离的方法 距离指标 在时间序列分类中,我们需要计算两个序列之间的距离,同时牢记每个序列内样本之间的时间关系和依赖性。 选择正确的指标是这种方法的基础。 欧几里得距离 让我们开始考虑常见的欧几里得距离。 鉴于时间序列分类,欧几里得距离是不合适的,因为即使它保留了时间顺序,它也以逐点的方式测量距离。 DTW通过局部拉伸和压缩,找出两个数字序列数据的最佳匹配,同时也可以计算这些序列之间的距离。 DTW是干什么的? 全部类似点的距离之和做为规整路径距离,用规整路径距离来衡量两个时间序列的类似性。规整路径距离越小,类似度越高。 ,bn},维度m>n 然后用欧式距离计算出每序列的每两点之间的距离,D(ai,bj) 其中1≤i≤m,1≤j≤n 画出下表: 接下来就是根据上图将最短路径找出来。
我们从最常见的距离度量开始,即欧几里得距离。最好将距离量度解释为连接两个点的线段的长度。 该公式非常简单,因为使用勾股定理从这些点的笛卡尔坐标计算距离。 ? 曼哈顿距离是指两个矢量之间的距离,如果它们只能移动直角。在计算距离时不涉及对角线移动。 ? 缺点 尽管曼哈顿距离在高维数据中似乎可以工作,但它比欧几里得距离更不直观,尤其是在高维数据中使用时。 用例 当数据集具有离散和/或二进制属性时,Manhattan似乎工作得很好,因为它考虑了在这些属性的值中实际可以采用的路径。以欧几里得距离为例,它会在两个向量之间形成一条直线,但实际上这是不可能的。 同样,它也可以用于文本相似度分析,以衡量文档之间的选词重叠程度。因此,它可以用来比较模式集。 半正矢距离(haversine) ? Haversine距离是指球面上两个点之间的经度和纬度。 它与欧几里得距离非常相似,因为它可以计算两点之间的最短线。主要区别在于不可能有直线,因为这里的假设是两个点都在一个球面上。 ? 缺点 这种距离测量的一个缺点是,假定这些点位于一个球体上。
使用给定的预训练单词嵌入,可以通过计算“一个文档的嵌入单词需要“移动”以到达另一文档的嵌入单词所需的最小距离”来用语义含义来度量文档之间的差异。 通过调整T中的值,可以获得两个文档之间的语义距离。距离也是将所有单词从一个文档移动到另一个文档所需的最小累积成本。约束和下界近似 最低累计成本有两个限制,即 ? 对于文档A中的任何单词i,文档B中的任何单词j 总的来说,受约束的最小累积成本的计算复杂度为O(p³logp),其中p是文档中唯一单词的数量。 Word centroid distance(WCD) 通过使用三角不等式,可以证明累积成本始终大于或等于由单词嵌入的平均值加权的文档向量之间的欧几里得距离。 如果删除一个约束,则累积成本的最佳解决方案是将一个文档中的每个单词都移动到另一个文档中最相似的单词上。这意味着成本最小化问题变成了在嵌入空间中找到两个单词嵌入的最小欧几里得距离。
subok:默认返回一个与基类类型一致的数组。 ndmin:指定生成数组的最小维度。 ptp()函数:计算数组中元素最大值与最小值的差(最大值-最小值)。 median()函数:用于计算数组中元素的中位数(中值)。 mean()函数:返回数组中元素的算术平均值。 ()函数用于计算两点之间的距离 在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。 使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。 x1 = np.array([[1, 2]]) x2 = np.array([[4, 5]]) # 通过cdist函数,计算两个点之间的距离·欧氏距离 distance = cdist(x1, x2
我们从最常见的距离度量开始,即欧几里得距离。它是一种距离度量,最好解释为连接两点的线段的长度。 这个公式相当简单,因为距离是从这些点的笛卡尔坐标用勾股定理计算出来的。 ? 曼哈顿距离是指两个矢量之间的距离,如果它们只能移动直角。在计算距离时不涉及对角线移动。 ? 缺点 尽管曼哈顿距离在高维数据中似乎可以工作,但它比欧几里得距离更不直观,尤其是在高维数据中使用时。 用例 当数据集具有离散和/或二进制属性时,Manhattan似乎工作得很好,因为它考虑了在这些属性的值中实际可以采用的路径。以欧几里得距离为例,它会在两个向量之间形成一条直线,但实际上这是不可能的。 切比雪夫距离定义为两个向量在任意坐标维度上的最大差值。换句话说,它就是沿着一个轴的最大距离。由于其本质,它通常被称为棋盘距离,因为国王从一个方格到另一个方格的最小步数等于切比雪夫距离。 ? 它与欧几里得距离非常相似,因为它计算两点之间最短的直线。主要的区别是不可能是直线,因为这里的假设是两点在球面上。 ? 缺点 这种距离测量的一个缺点是假定这些点在球面上。
Lp范数 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。 闵氏距离也是Lp范数(如p==2为常用L2范数正则化)的一般化定义。 (样本间最大与最小欧氏距离之间的相对差距就趋近于0),也就是维度灾难的问题,如下式结论: 对于维度灾难的问题,常用的有PCA方法进行降维计算。 六、时间系列、图结构的距离 DTW (Dynamic Time Warping) 距离 DTW 距离用于衡量两个序列之间的相似性,适用于不同长度、不同节奏的时间序列。 (具体可参考[5]) 图结构的距离 图结构间的相似度计算,有图同构、最大共同子图、图编辑距离、Graph Kernel 、图嵌入计算距离等方法(具体可参考[4][6])。 基于信息论推导的一些距离度量学习算法,比如ITML和MCML等通常是使用距离度量矩阵定义一个分布,然后推导出最小化两个分布的KL距离或者Jeffery距离等等。
⑨ 马氏距离 马氏距离Mahalanobis是一种主要用于多变量统计测试的度量指标,其中欧氏距离无法给出观测值之间的实际距离。它测量数据点离分布有多远。 来自平均值的具有相同 ED 值的两个点。 然后我们可以使用欧几里得距离,它给出了与前两个数据点之间的平均值的不同距离。这就是马哈拉诺比斯指标的作用。 两个物体 P 和 Q 之间的马氏距离。 其中C表示属性或特征之间的协方差矩阵。 ⑩ 标准化欧几里得距离 标准化或归一化是在构建机器学习模型时在预处理阶段使用的一种技术。该数据集在特征的最小和最大范围之间存在很大差异。 为了回答这个问题,我们需要比较两个公式的每一项。 Jaccard 和余弦公式 这两个公式之间的唯一区别是分母项。 Pydist2 pydist2是一个python包,1:1代码采用pdist[7]和pdist2[8] Matlab函数,用于计算观测之间的距离。
点云处理过程中可能会遇到寻找最临近点的问题,常用的解决方案就是用空间换效率。例如建立kd-tree等树状结构来代替遍历。 输出作为对的向量给出,其中第一个元素是点索引,第二个元素是相应的距离。查看示例使用代码。 3. 使用动态点云而无需重建整个kd-tree索引。 E. 使用距离度量标准: o L1 (曼哈顿) o L2 (欧几里得,赞成SSE2优化)。 o L2_Simple (欧几里得,用于像点云这样的低维数据集)。 o SO2 (用于旋转组SO2)。 o SO3 (欧几里得,对于旋转组SO3)。 F. 只有C ++接口存在:不支持C,MATLAB或Python。 2.如何选择KD树参数?
我们知道平面上到原点欧几里得距离(p = 2)为 1 的点所组成的形状是一个圆,当 p 取其他数值的时候呢? 消除不同维度之间的相关性和尺度不同,只需要对样本点 x 做如下处理: 。处理之后的欧几里得距离就是原样本的马氏距离:为了书写方便,这里求马氏距离的平方): ? 向量和信号都是离散值,如果是连续的函数值,比如求区间[-1, 1] 两个函数之间的相似度,同样也可以得到(系数)组分,这种方法可以应用于多项式逼近连续函数,也可以用到连续函数逼近离散样本点(最小二乘问题 分类数据点间的距离 汉明距离(Hamming distance)是指,两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。 概率分布之间的距离 前面我们谈论的都是两个数值点之间的距离,实际上两个概率分布之间的距离是可以测量的。
消除不同维度之间的相关性和尺度不同,只需要对样本点 x 做如下处理: ? 。处理之后的欧几里得距离就是原样本的马氏距离:为了书写方便,这里求马氏距离的平方): ? 向量和信号都是离散值,如果是连续的函数值,比如求区间[-1, 1] 两个函数之间的相似度,同样也可以得到(系数)组分,这种方法可以应用于多项式逼近连续函数,也可以用到连续函数逼近离散样本点(最小二乘问题 分类数据点间的距离 汉明距离(Hamming distance)是指,两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。举个维基百科上的例子: ? 序列之间的距离 上一小节我们知道,汉明距离可以度量两个长度相同的字符串之间的相似度,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离( 概率分布之间的距离 前面我们谈论的都是两个数值点之间的距离,实际上两个概率分布之间的距离是可以测量的。
,S 中所有的单词的向量共面。 解释内积 为了明确解释上述条件的意义,我们需要能够解释两个单词向量之间的内积(即点积)。 然而,现有的文献只告诉我们如何解释一个单词和一个上下文向量之间的内积。 解释欧几里得距离 存在 ? ,使得对于任意两个在无噪声的 SGNS 或 GloVe 空间中的单词 x 和 y,有: ? 。 平方后的两个单词之间的欧几里得距离是他们的负 csPMI 的递减线性函数。 这是很直观的:通过 csPMI 进行度量时,在训练语料库中越相似的两个单词的词向量之间的距离就越小。尽管如此,据我们所知,这还是第一次从信息论的角度解释单词向量空间中的欧几里得距离。 接着,我们试图使用在维基百科数据上训练的 SGNS 向量,通过传统的最小化余弦距离的方式,对这些类比进行求解。 ? 在上面的表格中,我们可以看到: 1. 正如预期的那样,横纵坐标之间有一个较强的正相关关系(皮尔逊相关系数 r=0.502);两个单词越相似(正如 csPMI 定义的那样),二者词向量之间的欧几里得距离越小。
扫码关注腾讯云开发者
领取腾讯云代金券