首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matplotlib类别比较图(2)

    1、棉棒图(棒棒糖图) 棉棒图传递了柱状图和条形图相同的信息,只是将矩形换成线条,这样可以减少展示空间,重点放在数据上,看起来更加简洁美观。相对于柱状图,棉棒图更加适合用于数据量较多的情况。...(可选参数) basefmt:基线的样式,规则和颜色同linefmt。(可选参数) bottom:基线位置,默认为0。(可选参数) orientation:棉棒图方向,默认垂直x轴。...) ax4.stem(x, y, linefmt = 'b:', markerfmt = 'b*', basefmt = 'b-', bottom = 0.01) plt.show() 2、间断条形图...间断条形图是在条形图基础上绘制的,主要可视化数据在时间维度上的变化情况。...yrange:表示条形图矩形的宽度(占据y轴的位置),例如(10, 8)表示该系列从y=10开始,占据宽度为8。 **kwargs:其他参数设置,例如facecolors表示系列颜色等。

    1.1K10

    让你彻底弄懂用Python绘制条形图(柱状图)

    二、竖放条形图 1 竖放条形图绘图原理 Python中绘制竖放条形图需用matplotlib.pyplot中的bar函数,该函数的基本语法为: bar(x, height, [width], [...3 优化显示竖放条形图 以时间为横轴,每年收盘价均值为纵轴绘制竖放条形图,并添加标题和轴标签等,具体语句如下: result = date[['收盘价']].groupby(date.index.year...1 横放条形图绘图原理 Python中绘制横向条形图需用matplotlib.pyplot中的barh函数,该函数和bar函数类似,它的基本语法为: barh(y, width, [height]...四、并列条形图 有时在绘制条形图时需对比显示某些信息,比如想同时观察股票最高价和最低价的变化趋势,可采用并列条形图,具体语句如下: result = date.groupby(date.index.year...有时需要把两组数值绘制在同一个条形图中,以股票最高价和最低价为示例,绘制拼接条形图,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价

    12.6K40

    Seaborn的15种可视化图表详解

    在本文中,将介绍Seaborn的最常用15个可视化图表 Seaborn是一个非常好用的数据可视化库,它基于Matplotlib,并且提供了一个高级接口,使用非常见简单,生成图表也非常的漂亮。...我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。...',data=data) 4、线形图 线形图可以用来可视化各种不同的关系。...在该图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。...它创建了一个坐标轴网格,这样所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。对角线图是单变量分布图,它绘制了每列数据的边际分布。

    37521

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 ? 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...首先,我们设定的水平区间要同时满足两个变量的分布。根据水平区间的范围和箱体数,我们可以计算每个箱体的宽度。其次,我们在一个图表上绘制两个直方图,需要保证一个直方图存在更大的透明度。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2.4K60

    五分钟入门数据可视化

    多变量可视化视图: 可以让一张图同时查看两个以上的变量,比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出这两个变量之前是否存在某种联系...针对离散变量我们可以使用常见的条形图和饼图完成数据的可视化工作,那么,针对数值型变量,我们也有很多可视化的方法,例如箱线图、直方图、折线图、面积图、散点图等等。...seaborn 如果要修改X和Y轴的参数需要这样写代码 df中的参数名字和lineplot中的参数的一一对应的,同时lineplot中的year就是x轴的名字,money就是y轴的名字 df = pd.DataFrame...Matplotlib seaborn: ? seaborn ? seaborn 条形图 条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。

    2.7K30

    5 种快速易用的 Python Matplotlib 数据可视化方法

    如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...首先,我们设定的水平区间要同时满足两个变量的分布。根据水平区间的范围和箱体数,我们可以计算每个箱体的宽度。其次,我们在一个图表上绘制两个直方图,需要保证一个直方图存在更大的透明度。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2K40

    图表(Chart & Graph)你真的用对了吗?

    y轴起始为0,可以显示各柱状的数值。 2)条形图 条形图基本上是水平的柱形图,可以用于避免在超过10个项目进行比较时产生杂乱。这种图表类型也可用于显示负数。...设计条形图的最佳做法: 图表中使用对比色,高亮特殊有意义的数据。 使用垂直标签,提高数据可读性。 X轴起始为0,可以显示各柱状的数值。...3)线形图 线形图展示了数据随时间变换的趋势,可用于显示许多不同类别的数据。需要绘制连续的数据集时,很适合使用这种图表类型。 设计线形图的最佳做法: 使用实线绘制。...使用正确的高度,使线条占据y轴高度的2/3左右。 4)双轴图 双轴图可用于显示双Y轴的数据。这种图形由三个数据集组成,两个Y轴数据,一个X轴数据。主要用于显示两个Y轴随X轴变化时的相关性。...5)面积图 面积图基本上是一条线图,但X轴和线之间的空间用颜色或图案填充,用于显示局部和整体的关系,可以帮助分析总体趋势和单个数据趋势。

    2.3K10

    matplotlib入门

    初开发的Matplotlib,仅支持绘制2d图形,后来随着版本的不断更新,Matplotlib在二维绘图的基础上,构建了一部分较为实用的3D绘图程序包,通过调用该程序包一些接口可以绘制3D散点图、3D曲面图...基本流程: 1.导入依赖 from matplotlib import pyplot as plt import numpy as np 2.定义x轴和y轴数据 x = np.linspace(0,20,200...#画第二个条形图 rects2 = plt.bar( # index, # 与第一个条形图在X周上无缝“肩并肩” index +bar_width...= plt.bar(index + bar_width, # 与第一个条形图在X周上无缝“肩并肩” means_guido, bar_width...', label = '张三') #定义第一个条形图的标签信息 #画第二个条形图 rects2 = plt.bar(index, # 与第一个条形图在X周上无缝“

    4.3K20

    Python中最常用的 14 种数据可视化类型的概念与代码

    本文总结介绍了多种可视化图及其适合使用场景,并同时展示使用了常用的绘图包(plotly、 seaborn 和 matplotlib )绘制这些图的代码。 条形图 条形图是用矩形条显示分类数据的图形。...中 ax = sns.boxplot(x) ax.figure.set_size_inches(12,6) 以下是条形图的类型 分组条形图 当数据集具有需要在图形上可视化的子组时,将使用分组条形图。...线形图 它将一系列数据点显示为标记。这些点通常按其 x 轴值排序。这些点用直线段连接。折线图用于可视化一段时间内数据的趋势。 以下是折线图中按年计算的加拿大预期寿命的说明。...它们在水平轴上的位置决定了一个变量的值。垂直轴上的位置决定了另一个变量的值。当一个变量可以控制而另一个变量依赖于它时,可以使用散点图。当两个连续变量独立时也可以使用它。...这些变量显示在从同一点开始的轴上。

    9.6K20

    【matplotlib】2-使用统计函数绘制简单图形

    文章目录 使用统计函数绘制简单图形 1.函数bar()--用于绘制柱状图 2.函数barh()--用于绘制条形图 3.函数hist()--用于绘制条形图 4.函数pie()--用于绘制饼图 5.函数polar...使用统计函数绘制简单图形 1.函数bar()–用于绘制柱状图 函数功能: 在x轴上绘制定性数据的分布特征 调用签名: plt.bar(x, y) 参数说明: x: 标示在x轴上的定性数据的类别 y...plt.xlabel('category') plt.ylabel('weight(kg)') plt.show() 2.函数barh()–用于绘制条形图 函数功能: 在y轴上绘制定性数据的分布特征...调用签名: plt.barh(x, y) 参数说明: x: 标示在y轴上的定性数据的类别 y: 每种定性数据的类别的数量 # -*- coding: utf-8 -*- import matplotlib...('weight(kg)') plt.show() 3.函数hist()–用于绘制条形图 函数功能: 在x轴上绘制定量数据的分布特征 调用签名: plt.hist(x) 参数说明: x: 在x轴上绘制箱体的定量数据输入值

    1.3K10

    使用Matplotlib轻松搞定3D绘图

    3D图可以让我们更加直观的了解数据之间的关系: x - y , x - z和y - z 。在本文中,我将简单介绍使用Matplotlib进行3D数据可视化。...3D散点图和线图 matplotlib中提供3D画图库为mplot3d,在使用时,我们通过一个关键字projection="3d"即可创建3D坐标轴。...在绘制3D图形后,我们可以交互的查看图形。只需要简单点击并拖动绘图结果即可。 ? ? 3D曲面图 曲面图可以很好地提供了一个完整的结构来查看每个变量的值如何在另外两个轴的轴上变化。...3D条形图 条形图是数据可视化中常用的一类图形,其能够以简单直观的方式反映出数据信息。 3D条形图的美妙之处在于它们保持了2D条形图的简单性,同时扩展了它们表示比较信息的能力。...绘制条形图需要两个东西:位置和大小。 在3D条形图中,我们将选择z轴来表示高度; 因此,每个条形将从z = 0开始,其大小与我们试图可视化的值成比例。

    3.9K40

    软件测试|Python绘图神器matplotlib教程(三)

    Python matplotlib教程(三) 之前的文章,我们介绍了使用matplotlib绘制曲线图以及散点图,本篇文章我们来介绍一下使用matplotlib绘制柱状图以及条形图。...") # 设置x,y轴标签 plt.xlabel("车型") plt.ylabel("销量(辆)") # 展示柱状图 plt.show() 绘制的柱状图如下: 图片 绘制条形图 绘制条形图的步骤与绘制柱状图非常相似...,,基本上是对柱状图的90度旋转,我们还是沿用老数据,语法如下: plt.barh(x,y,align="center",color="b",tick_label=[],hatch="\") 完整语法示例如下.../") # 设置x,y轴标签 plt.xlabel("销量(辆)") plt.ylabel("车型") plt.show() 生成的图像如下: 图片 注:生成条形图时,注意x轴y轴名称的变换 总结...本文主要介绍了Python使用matplotlib绘制柱状图以及条形图的步骤,代码比较简单,但是对于我们日常工作中还是很有帮助的,帮助我们快速绘制出数据的报表。

    62750

    Matplotlib可视化没那么难:7种常用图表最全绘制攻略来了!

    Matplotlib提供了丰富的数据绘图工具,主要用于绘制一些统计图形,例如散点图、条形图、折线图、饼图、直方图、箱形图等。...在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如下。 x/y:X/Y轴数据。两者都是向量,而且必须长度相等。...▲图2 条形图 03 折线图 折线图是用直线连接排列在工作表的列或行中的数据点而绘制成的图形。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示相等时间间隔下数据的趋势。...x:数据源 labels:(每一块)饼图外侧显示的说明文字 explode:(每一块)离开中心距离 startangle:起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起 shadow...代码清单7 绘制组合图 from numpy.random import randn import matplotlib.pyplot as plt #在同一个figure中创建一组2行2列的subplot

    6.6K31

    5个快速而简单的数据可视化方法和Python代码

    为了创建一个新的plot图,我们将其称为“pl .subplot()”。我们将x轴和y轴数据传递给函数,然后将它们传递给“ax.scatter()”来绘制散点图。我们还可以设置点大小、点颜色和透明度。...根据这个范围和所需的箱子数量,我们实际上可以计算出每个箱子的宽度。最后,我们在同一块图上绘制两个直方图,其中一个稍微透明一些。...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...在' barplot() '函数中,' xdata '表示x轴上的标记,' ydata '表示y轴上的条高。误差条是以每个栏为中心的一条额外的线,用来显示标准差。 分组条形图允许我们比较多个分类变量。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。

    2.1K10

    Python可视化——3D绘图解决方案pyecharts、matplotlib、openpyxl

    这篇博客将介绍python中可视化比较棒的3D绘图包,pyecharts、matplotlib、openpyxl。基本的条形图、散点图、饼图、地图都有比较成熟的支持。...3D条形图、散点图、曲面图示例如下: 3D表面、地图示例如下: 点、线、流GL图如下: 2. matplotlib 支持以下图表: 在 3D 绘图上绘制 2D 数据 3D条形图演 在不同平面上创建二维条形图...绘制 3D 轮廓(水平)曲线 使用 extend3d 选项绘制 3D 轮廓(水平)曲线 将轮廓轮廓投影到图形上 将填充轮廓投影到图形上 3D 曲面图中的自定义山体阴影 3D 误差条 3D 误差线 创建...2D 数据的 3D 直方图 参数曲线 洛伦兹吸引子 2D 和 3D 轴在同一个 图 同一图中的 2D 和 3D 轴 在 3D 绘图中绘制平面对象 生成多边形以填充 3D 折线图 3D 箭袋图 旋转 3D...3D 面积图 条形图和柱形图 垂直、水平和堆积条形图 3D 条形图 气泡图 折线图 二维折线图 3D 折线图 散点图 饼图 投影饼图 3D 饼图 渐变饼图 甜甜圈图 雷达图 股票图表 表面图 3D

    3.2K00
    领券