学习
实践
活动
专区
工具
TVP
写文章

MNIST终结者:Fashion-MNIST

8月27日,Fashion-MNIST图片库在GitHub上开源,MNIST的时代宣告终结。 这不是巧合,而是Fashion-MNIST蓄谋已久。 它克隆了MNIST的所有外在特征: 60000张训练图像和对应Label; 10000张测试图像和对应Label; 10个类别; 每张图像28x28的分辨率; 4个GZ文件名称都一样; 对于已有的MNIST 训练程序,只要修改下代码中的数据集读取路径,或者残暴的用Fashion-MNIST数据集文件将MNIST覆盖,替换就瞬间完成了。 对于MNIST可以达到95%识别率的训练代码,去训练Fashion-MNIST,最后模型识别率猛降了10个百分点。 对于一个人工智能算法,是否可用的一个根本性度量标准就是:不亚于人类。 本篇所用代码tf_fashion_mnist.py的测试结果: ? 识别Fashion-MNIST

822100
  • 广告
    关闭

    2023新春采购节

    领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解 Pytorch 实现 MNIST

    MNIST虽然很简单,但是值得我们学习的东西还是有很多的。 项目虽然简单,但是个人建议还是将各个模块分开创建,特别是对于新人而言,模块化的创建会让读者更加清晰、易懂。 CNN模块:卷积神经网络的组成; train模块:利用CNN模型 对 MNIST数据集 进行训练并保存模型 test模块:加载训练好的模型对测试集数据进行测试 cnn.pt : train 的CNN模型 的小伙伴尽量使用GPU训练,GPU的训练速度比CPU的训练速度高许多倍,可以节约大量训练时间 文章目录 1、CNN 模块 CNN 模块分析 2、train 模块 3、test 模块 1、CNN 模块 MNIST 手写数字训练集 train_dataset = datasets.MNIST( root='. 手写数字测试集 test_dataset = datasets.MNIST( root='.

    18030

    学界 | Fashion-MNIST:替代MNIST手写数字集的图像数据集

    Fashion-MNIST 的目的是要成为 MNIST 数据集的一个直接替代品。作为算法作者,你不需要修改任何的代码,就可以直接使用这个数据集。 Fashion-MNIST 的图片大小,训练、测试样本数及类别数与经典 MNIST 完全相同。 写给专业的机器学习研究者 我们是认真的。 大多数 MNIST 只需要一个像素就可以区分开; MNIST 被用烂了。参考下图,Ian Goodfellow 希望人们不要再用 MNIST 了; ? MNIST 数字识别的任务不代表现代机器学习。 数据可视化 t-SNE 在 Fashion-MNIST(左侧)和经典 MNIST 上的可视化(右侧) ? PCA 在 Fashion-MNIST(左侧)和经典 MNIST 上的可视化(右侧) ? [1] 经典 MNIST 数据集: http://yann.lecun.com/exdb/mnist/ [2] 基于 scikit-learn 的评测: http://fashion-mnist.s3-

    1.2K90

    扫码关注腾讯云开发者

    领取腾讯云代金券