首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MPP架构与Hadoop架构是一回事吗?

在GreenPlum的官方文档中就写道:“Hadoop就是一种常见的MPP存储与分析工具。Spark也是一种MPP架构。”来看下面的图,更能体会到两者的相似性。 问:这是什么架构?...不仅与Spark SQL没有区别,与其他任何Hadoop生态圈类似架构如Hive SQL、Flink SQL都没有区别。...这就与MPP架构的历史有关系。虽然从理论基础上两者是一回事,但是MPP架构与Hadoop架构的发展却是走的两条路线。...但是,Hadoop、Spark等框架的理论基础与分布式数据库仍然是一样的。广义上讲,MPP架构是一种更高层次的概念,它的含义就是字面含义,但是它本身并没有规定如何去实现。...但是随着这些年的发展,这些技术早就融入到了Hadoop生态圈中,Hive、Spark框架的优化技术也越做越好,由此与MPP架构的技术差距也越来越小,甚至有覆盖的趋势。

3.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Snova架构篇(一):Greenplum MPP核心架构

    本节主要从MPP架构入手,结合gp核心架构设计理念为深入理解snova打基础。...图片.png 服务层 [表格] 产品特性 图片.png 客户端访问和工具 图片.png 3.核心架构设计:MPP无共享架构 图片.png 图片.png 主从节点,主节点负责协调整个集群 一个数据节点可以配置多个节点实例...(二)分布和分区 分布(DISTRIBUTE)与分区(PARTITION) 图片.png 图片.png 目的: 1. 把大数据切片,便于查询 2....(五)大规模并行数据加载 copy命令 copy工具源于PostgreSQL数据库,copy命令支持文件与表之间的数据加载和表对文件的数据卸载。...,数据需要经过Master节点分发到Segment节点,同样使用copy命令进行数据卸载,数据也需要由Segment发送到Master节点,由Master节点汇总后再写入外部文件,这样就限制了数据加载与卸载的效率

    3.7K10

    MPP架构详解_大数据中心架构详解

    大规模并行处理(MPP)架构 例子 Greenplum是一种基于PostgreSQL的分布式数据库。...其采用shared nothing架构(MPP),主机,操作系统,内存,存储都是自我控制的,不存在共享。也就是每个节点都是一个单独的数据库。节点之间的信息交互是通过节点互联网络实现。...elasticsearch也是一种MPP架构的数据库,Presto、Impala等都是MPP engine,各节点不共享资源,每个executor可以独自完成数据的读取和计算,缺点在于怕stragglers...,遇到后整个engine的性能下降到该straggler的能力,所谓木桶的短板,这也是为什么MPP架构不适合异构的机器,要求各节点配置一样。...Spark SQL应该还是算做Batching Processing, 中间计算结果需要落地到磁盘,所以查询效率没有MPP架构的引擎(如Impala)高。

    2.8K10

    MPP大规模并行处理架构详解

    采用MPP架构的很多OLAP引擎号称:亿级秒开。 本文分为三部分讲解,第一部分详解MPP架构,第二部分剖析MPP架构与批处理架构的异同点,第三部分是采用MPP架构的OLAP引擎介绍。...NUMA的基本特征是拥有多个CPU模块,节点之间可以通过互联模块进行连接和信息交互,所以,每个CPU可以访问整个系统的内存(这是与MPP系统的重要区别)。...而在MPP服务器中,每个节点只访问本地内存,不存在异地内存访问问题。 二、批处理架构和MPP架构 批处理架构(如 MapReduce)与MPP架构的异同点,以及它们各自的优缺点是什么呢?...相同点: 批处理架构与MPP架构都是分布式并行处理,将任务并行的分散到多个服务器和节点上,在每个节点上计算完成后,将各自部分的结果汇总在一起得到最终的结果。...举个例子来说下两种架构的数据落盘:要实现两个大表的join操作,对于批处理而言,如Spark将会写磁盘三次(第一次写入:表1根据join key进行shuffle;第二次写入:表2根据join key进行

    6.6K60

    Spark查询太慢?试试这款MPP数据库吧!

    导读:Greenplum数据库是基于MPP架构的开源大数据平台,具有良好的弹性和线性扩展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容SQL标准,具有强大、高效的PB级数据存储、处理和实时分析能力...Interconnect是Master节点与Segment实例、Segment实例与Segment实例之间进行数据传输的组件,它基于千兆交换机或者万兆交换机实现数据在节点之间的高速传输。...Greenplum作为一款基于MPP架构的数据库,具有开源、易于扩展、高查询性能的特点,性价比碾压DB2、Oracle、Teradata等传统数据库。...后期虽有Impala+Kudu,但是查询性能仍然弱于同为MPP架构的Greenplum。除此之外,Hadoop生态圈非常复杂,安装和维护的工作量都很大,没有专业的运维团队很难支撑系统运行。...最后,Greenplum作为MPP数据库中的一员,相对于其他MPP架构数据库,也具有非常明显的优势。Greenplum研发历史长、应用范围广、开源稳定、生态系统完善。

    1.6K30

    大数据Spark(五十七):Spark运行架构与MapReduce区别

    Spark运行架构与MapReduce区别 一、Spark运行架构 Master:Spark集群中资源管理主节点,负责管理Worker节点。...Worker:Spark集群中资源管理的从节点,负责任务的运行。 Application:Spark用户运行程序,包含Driver端和在各个Worker运行的Executor端。...二、Spark与MapReduce区别 Apache Spark 和 Hadoop MapReduce 都是用于大规模数据处理的分布式计算框架,但它们在架构设计、数据处理方式和应用场景等方面存在显著差异...Spark:利用内存进行数据处理,将中间结果存储在内存中,减少了磁盘读写操作,从而显著提高了处理速度。特别是在需要多次迭代计算的场景下,Spark 的性能优势更加明显。...Spark:采用粗粒度资源调度。Application运行前,为所有的Spark Job申请资源,所有Job执行完成后,统一释放资源。

    14010

    Doris、ClickHouse、Impala等MPP架构背后的秘密

    MPP架构:打破数据分析的速度极限 MPP(大规模并行处理)架构是一种分布式计算架构,它将一个大任务分解成多个小任务,分配给多个计算节点并行处理。 每个节点独立完成自己的任务,最后将结果合并。...一位资深架构师曾告诉我:"理解MPP架构最简单的方法就是,好比一群人同时在各自的位置上工作,各自完成一部分任务,然后把结果汇总起来。"...MPP与批处理:两种思路的较量 很多人问我,为什么不用Hadoop或Spark这样的批处理系统? MPP和批处理架构都采用分布式并行处理,但它们的工作方式截然不同。...Doris、ClickHouse与Impala的MPP架构 如今市场上主流的MPP引擎各有特色, 以Doris、ClickHouse与Impala为例。...MPP性能提升的秘密 MPP架构之所以能实现"亿级秒开",背后有三个关键技术支撑。 1. MPP分布式架构 MPP架构解决了多机协同计算的问题,将查询任务分散到多个节点并行执行。

    18910

    MPP技术的优势与严重缺陷

    MPP代表"Massively Parallel Processing",是一种计算机架构,旨在通过分布式处理来实现大规模数据处理和分析。...MPP架构通常用于处理海量数据的应用程序,如数据仓库、商业智能和大数据分析。 MPP常见的发力场景是数据仓库。...Apache Cassandra (支持 MPP 模式) MPP技术的出现,有它重要的历史意义。单机数据库的存储和计算性能有限,MPP这种以多节点的形式进行共同存储与计算的技术就应运而生。...一些单机数据库,也可以通过增加中间件的形式组织为MPP架构,以增加存储和计算性能。 这样一种架构势必解决了一些问题,解决了超过单机数据库能承受的中等规模数据的存储与计算问题。但也带来了一些新的问题。...MPP技术的使用场景,当然就是中小规模的数据存储与处理。因为扩展性有限,数据量一旦达到海量级别,就只能寻求大数据方案去解决了。

    83430

    Apache Doris,MPP架构数据库王者学习总结

    目录 一:doris介绍 二:开源olap引擎比较 三:doris基本概念和架构图 3.1 基本概念 3.2 架构图 四:doris数据导入 五:doris的三种数据模型 一:doris介绍 doris...是一个基于mpp(massively parallel processing,即大规模并行处理)的交互式sql数据仓库,是一个面向多种数据分析场景的,兼容mysql协议的,高性能的,分布式关系型列式数据库...三:doris基本概念和架构图 3.1 基本概念 FE:FrontEnd Doris的前端节点,负责管理元数据,管理客户端连接,进行查询规划,查询调度等工作。...3.2 架构图 四:doris数据导入 数据导入功能是将原始数据按照相应的模型进行清洗转换并加载到doris中,方便查询和使用。...Doris 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的. Doris 的数据模型主要分为3类:Aggregate, Uniq, Duplicate.

    3.7K30

    Spark架构模式与Flink的对比

    Spark架构模式与Flink的对比 Spark和Flink都属于流批一体的分布式计算引擎。Flink属于流处理框架,通过流来模拟批,Spark属于批处理框架,通过批来模拟流。...与 Spark 的 RDD 不同的是,Stream 代表一个数据流而不是静态数据的集合。所以,它包含的数据是随着时间增长而变化的。...Spark vs Flink Flink是一个流处理系统,采用Dataflow架构。...Spark与Flink背压不同,Spark Streaming 在原有的架构上加入了一个 RateController,利用的算法是 PID,需要的反馈数据是任务处理的结束时间、调度时间、处理时间、消息条数...其次,Spark是批处理架构,适合基于历史数据的批处理。最好是具有大量迭代计算场景的批处理。 Spark可以支持近实时的流处理,延迟性要求在在数百毫秒到数秒之间。

    90120

    1.1.3 Spark架构与单机分布式系统架构对比

    传统的单机系统,虽然可以多核共享内存、磁盘等资源,但是当计算与存储能力无法满足大规模数据处理的需要时,面对自身CPU与存储无法扩展的先天限制,单机系统就力不从心了。...Spark正是基于这种分布式并行架构而产生,也可以利用分布式架构的优势,根据需要,对计算能力和存储能力进行扩展,以应对处理海量数据带来的挑战。...同时,Spark的快速及容错等特性,让数据处理分析显得游刃有余。 Spark架构 Spark架构采用了分布式计算中的Master-Slave模型。...具体架构如图1-3所示。 [插图] 图1-3 Spark架构 在Spark应用的执行过程中,Driver和Worker是相互对应的。...Spark架构揭示了Spark的具体流程如下: 1)用户在Client提交了应用。 2)Master找到Worker,并启动Driver。

    93850

    Spark2.x学习笔记:4、Spark程序架构与运行模式

    4、 Spark程序架构与运行模式 4.1 Spark程序最简架构 所有的Spark程序运行时,主要由两大类组件Driver和Excutor构成。...Standalone模式需要将Spark复制到集群中的每个节点,然后分别启动每个节点即可;Spark Standalone模式的集群由Master与Worker节点组成,程序通过与Master节点交互申请资源...提示:大多博客介绍的《Spark完全分布式环境搭建》实际上就是Spark独立模式(standalone)。而Spark运行模式最常用的是Spark on YARN/Mesos。...4.4 Spark on YARN/Mesos 从架构和应用角度上看,spark是一个仅包含计算逻辑的开发库(尽管它提供个独立运行的master/slave服务,但考虑到稳定后以及与其他类型作业的继承性...Spark客户端会通过Spark AppMaster获取作业运行状态。

    99490

    Spark Storage ① - Spark Storage 模块整体架构

    本文为 Spark 2.0 源码分析笔记,某些实现可能与其他版本有所出入 Storage 模块在整个 Spark 中扮演着重要的角色,管理着 Spark Application 在运行过程中产生的各种数据...Storage 模块也是 Master/Slave 架构,Master 是运行在 driver 上的 BlockManager实例,Slave 是运行在 executor 上的 BlockManager...blocks 的元数据 给各个 Slaves 下发命令 Slave 负责: 管理存储在其对应节点内存、磁盘上的 Blocks 数据 接收并执行 Master 的命令 更新 block 信息给 Master 整体架构图如下...Storage 模块 Master Slaves 架构.jpg 在 driver 端,创建 SparkContext 时会创建 driver 端的 SparkEnv,在构造 SparkEnv 时会创建...Storage 模块的整体架构有个大致的了解,更深入的分析将在之后的文章中进行~ ----

    82920

    Spark on Yarn 架构解析

    新的架构使用全局管理所有应用程序的计算资源分配。...(可以基于现有的能力调度和公平调度模型) 2.NodeManager(NM)      节点管理器,每个节点一个,实现节点的监控与报告。...具体来说呢,它进行数据的切分,为应用申请资源并分配给任务,完成任务监控与容错。实际上,每个应用的ApplicationMaster是一个详细的框架库。...二、Spark on Yarn 1.当提交一个spark-submit任务时,spark将在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application...Spark on Yarn只需要部署一份spark,当应用程序启动时,spark会将相关的jar包上传注册给ResoureManager,任务的执行由ResourceManager来调度,并执行spark

    1.5K10
    领券