首页
学习
活动
专区
圈层
工具
发布

Doris、ClickHouse、Impala等MPP架构背后的秘密

一个简单的销售数据统计查询,需要等待近1小时才能出结果。  而当他们将系统迁移到基于MPP架构的Apache Doris后,同样的查询只需3秒就能完成......MPP架构:打破数据分析的速度极限 MPP(大规模并行处理)架构是一种分布式计算架构,它将一个大任务分解成多个小任务,分配给多个计算节点并行处理。 每个节点独立完成自己的任务,最后将结果合并。...一位资深架构师曾告诉我:"理解MPP架构最简单的方法就是,好比一群人同时在各自的位置上工作,各自完成一部分任务,然后把结果汇总起来。"...MPP架构不同,它实现了内存流水线(pipeline)处理,数据在内存中直接从一个操作传递给下一个操作,无需落盘,大大提高了查询速度。...MPP性能提升的秘密 MPP架构之所以能实现"亿级秒开",背后有三个关键技术支撑。 1. MPP分布式架构 MPP架构解决了多机协同计算的问题,将查询任务分散到多个节点并行执行。

19110

MPP架构详解_大数据中心架构详解

大规模并行处理(MPP)架构 例子 Greenplum是一种基于PostgreSQL的分布式数据库。...通过将数据分布到多个节点上来实现规模数据的存储,通过并行查询处理来提高查询性能。 这个就像是把小数据库组织起来,联合成一个大型数据库。将数据分片,存储在每个节点上。每个节点仅查询自己的数据。...elasticsearch也是一种MPP架构的数据库,Presto、Impala等都是MPP engine,各节点不共享资源,每个executor可以独自完成数据的读取和计算,缺点在于怕stragglers...,遇到后整个engine的性能下降到该straggler的能力,所谓木桶的短板,这也是为什么MPP架构不适合异构的机器,要求各节点配置一样。...Spark SQL应该还是算做Batching Processing, 中间计算结果需要落地到磁盘,所以查询效率没有MPP架构的引擎(如Impala)高。

2.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Greenplum MPP 架构

    1.Greenplum MPP架构 Greenplum(以下简称GPDB)是一款开源数据仓库。...GPDB是典型的Master/Slave架构,在Greenplum集群中,存在一个Master节点和多个Segment节点,其中每个节点上可以运行多个数据库。...Greenplum采用shared nothing架构(MPP)。典型的Shared Nothing系统会集数据库、内存Cache等存储状态的信息;而不在节点上保存状态的信息。...通过将数据分布到多个节点上来实现规模数据的存储,通过并行查询处理来提高查询性能。每个节点仅查询自己的数据。所得到的结果再经过主节点处理得到最终结果。通过增加节点数目达到系统线性扩展。...,子节点存储数据并负责SQL查询,主节点负责相应客户端请求并将请求的SQL语句进行转换,转换之后调度后台的子节点进行查询,并将查询结果返回客户端。

    1.3K10

    MPP架构与Hadoop架构是一回事吗?

    到底什么是MPP架构? MPP架构与Hadoop架构在理论基础上几乎是在讲同一件事,即,把大规模数据的计算和存储分布到不同的独立的节点中去做。...上面的几幅架构图印证了这一点。既然MPP架构与Hadoop架构本质上是一回事,那么为什么很多人还要将两者分开讨论呢?我们可能经常听到这样的话:“这个项目的架构是MPP架构。”...这就与MPP架构的历史有关系。虽然从理论基础上两者是一回事,但是MPP架构与Hadoop架构的发展却是走的两条路线。...给这些表中添加一些数据,并且执行一个查询语句: 首先,订单表要与客户表做Join,Join Key是客户ID。这种操作在Hadoop生态圈的分布式计算框架中,相当于对两个表做了Hash分区的操作。...其中一部分优化就包括了存储时的“列存储”技术,查询时的“CBO优化”等等。这些都是Hadoop生态圈一开始比较缺乏的技术。

    3.1K30

    Batch、MPP、Cube 和 Hadoop

    带来的优点是查询速度快,通常在秒计甚至毫秒级以内就可以返回查询结果。缺点是不支持细粒度的容错,不支持高并发,集群数量扩展有上限,执行引擎和存储紧耦合导致数据难以被其他分析引擎进行分析。...单独worker看,性能不及MPP,但是胜在scalability优异,几百个节点是没问题的,在集群性上远胜MPP。...,MPP架构是Full-SQL compatiable的,实现不局限于将Query分解为一连串的MR job去执行。...SQL on Hadoop SQL-on-Hadoop架构可以分为两类: SQL over Processing Framework:例如SparkSQL,Drill/Datameer,Presto,Impala...OLAP over Hadoop系统的共同特点是预计算,即数据都以时间序列的方式进入系统并经过数据预聚合和建立索引,因为是预计算,所以应对多维查询时速度非常快(计算时间复杂度O(1))且稳定,支持高并发

    2.7K30

    MPP大规模并行处理架构详解

    采用MPP架构的很多OLAP引擎号称:亿级秒开。 本文分为三部分讲解,第一部分详解MPP架构,第二部分剖析MPP架构与批处理架构的异同点,第三部分是采用MPP架构的OLAP引擎介绍。...一、MPP架构 MPP是系统架构角度的一种服务器分类方法。...Impala Apache Impala是采用MPP架构的查询引擎,本身不存储任何数据,直接使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。...它是由Java和C++实现的,Java提供的查询交互的接口和实现,C++实现了查询引擎部分。...Presto Presto是一个分布式的采用MPP架构的查询引擎,本身并不存储数据,但是可以接入多种数据源,并且支持跨数据源的级联查询。

    6.6K60

    MPP DB技术分类

    6.2.1 MPP的概念 在讨论MPP DB之前,我们先把MPP本身的概念搞清楚。MPP是系统架构角度的一种服务器分类方法。...通过分析NUMA和MPP服务器的内部架构与工作原理不难发现其差异所在。 首先是节点互联机制不同。...相对而言,MPP服务器架构的并行处理能力更优越,更适合复杂的数据综合分析与处理环境。当然,它需要借助支持MPP技术的关系数据库系统来屏蔽节点之间负载平衡与调度的复杂性。...6.MPP数据仓库架构分类 前面讲到MPP架构非常复杂,通常用到数据库系统来屏蔽节点间的负载平衡和调度的复杂性。...处理节点采用的是MPP架构,但是需要共享一套磁盘系统,因此,当存储器接口达到饱和的时候,增加节点并不能获得更高的性能。

    3.7K60

    每日一博 - MPP(Massively Parallel Processing,大规模并行处理)架构

    MPP架构常用于数据仓库、数据集市、大数据分析等场景,其分布式设计能够有效应对数据规模的不断增长和复杂度的提高,但也会面临一些挑战。 ---- 优点 MPP 架构的优点包括: ....一致性:由于每个节点本质上仍然是数据库,因此 MPP 架构在设计时优先考虑一致性(C),其次考虑可靠性(A),尽量做好分区容错性(P)。这使得 MPP 架构能够保证数据的一致性。...低延迟:MPP 架构中,各个节点的运算延迟相对较低。 缺点 然而,MPP 架构也存在一些缺点: 扩展性:由于非共享架构,MPP 架构在存储位置上不透明,数据在存储时通过哈希确定物理节点。...在执行任务时,无法确定数据的位置,因此查询任务需要在所有节点上执行。这使得 MPP 架构在扩展性方面较差,尤其是在大规模数据处理时,单节点瓶颈会成为整个系统的短板。...另外,MPP架构本身的节点数和数据量较大,节点故障成本也较高。 分布式事务:MPP 架构一般致力于实现分布式事务,但在分布式环境中实现事务后,扩展性一定会受到影响。

    1.1K30

    Hadoop vs MPP

    许多供应商都将 Hadoop 定位为替代传统数据仓库,这意味着可以替代 MPP 解决方案。 ? 那么什么是 MPP?MPP 表示大规模并行处理,网格的所有独立节点都参与协调计算,这就是网格计算的方法。...MPP DBMS 是基于此方法构建的数据库管理系统。在这些系统中,我们所关注的每个查询被分解为由 MPP 网格节点并行执行的一组协调处理,从而以比传统 SMP RDBMS 系统更快的速度运行计算。...第一个选择是 Hive,它是将 SQL 查询转换为 MR/Tez/Spark 作业并在集群上执行的一个引擎。...与其他 MPP 引擎一样,它们可以为我们提供更低的延迟以及更少的查询处理时间,但代价是可扩展性以及稳定性较低。 ?...10-20毫秒 10-20秒 查询平均运行时间 5-7秒 10-15分钟 查询最大运行时间 1-2小时 1-2周 查询优化 复杂的企业查询优化器引擎 没有优化器或优化器功能比较局限 查询调试与分析 有查询执行计划

    4.3K20

    从 Clickhouse 到 Snowflake: MPP 查询层

    壹 云原生Clickhouse MPP查询层架构设计 增强Clickhouse的分布式查询能力,主要考虑过以下两种方案: 方案一,改进现有的查询层,在现在查询层的基础上,增加更多的SQL 语法支持来兼容...与Clickhouse社区协同发展是保持产品生命力的重要方式,所以我们选择了方案二,架构如下图所示: (查询层架构图) Master 节点,这个跟存算分离架构中的Master节点是一体的,由于在存算分离中...在该架构下,查询的执行流程如下图所示: (查询执行流程图) 用户可以随意连接一个Clickhouse节点,发送SQL语句;当前这个Clickhouse节点作为本次查询的Initiator,把查询转发给...这种架构使得后续的版本升级更加方便,能够随时合并Clickhouse社区的最新功能。...MPP 查询引擎,逐步的把Clickhouse目前的查询语法废弃,平滑升级到新的查询引擎,未来我们也会在MPP查询引擎中兼容Clickhouse的SQL 语法标准,让用户的迁移更便利。

    1.9K42

    Apache Doris,MPP架构数据库王者学习总结

    目录 一:doris介绍 二:开源olap引擎比较 三:doris基本概念和架构图 3.1 基本概念 3.2 架构图 四:doris数据导入 五:doris的三种数据模型 一:doris介绍 doris...是一个基于mpp(massively parallel processing,即大规模并行处理)的交互式sql数据仓库,是一个面向多种数据分析场景的,兼容mysql协议的,高性能的,分布式关系型列式数据库...三:doris基本概念和架构图 3.1 基本概念 FE:FrontEnd Doris的前端节点,负责管理元数据,管理客户端连接,进行查询规划,查询调度等工作。...3.2 架构图 四:doris数据导入 数据导入功能是将原始数据按照相应的模型进行清洗转换并加载到doris中,方便查询和使用。...Doris 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的. Doris 的数据模型主要分为3类:Aggregate, Uniq, Duplicate.

    3.7K30

    Spark查询太慢?试试这款MPP数据库吧!

    导读:Greenplum数据库是基于MPP架构的开源大数据平台,具有良好的弹性和线性扩展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容SQL标准,具有强大、高效的PB级数据存储、处理和实时分析能力...Greenplum作为一款基于MPP架构的数据库,具有开源、易于扩展、高查询性能的特点,性价比碾压DB2、Oracle、Teradata等传统数据库。...后期虽有Impala+Kudu,但是查询性能仍然弱于同为MPP架构的Greenplum。除此之外,Hadoop生态圈非常复杂,安装和维护的工作量都很大,没有专业的运维团队很难支撑系统运行。...最后,Greenplum作为MPP数据库中的一员,相对于其他MPP架构数据库,也具有非常明显的优势。Greenplum研发历史长、应用范围广、开源稳定、生态系统完善。...关于作者:王春波,资深架构师和数据仓库专家,现任上海启高信息科技有限公司大数据架构师,Apache Doris和openGauss贡献者,Greenplum中文社区参与者。

    1.6K30

    Snova架构篇(一):Greenplum MPP核心架构

    本节主要从MPP架构入手,结合gp核心架构设计理念为深入理解snova打基础。...Postgres Server进程的功能组件可以分成两大类:查询执行和存储管理 2.gp数仓平台概览 大致上可以分为四层:从下至上依次为 核心架构层 图片.png 服务层 [表格] 产品特性 图片.png...客户端访问和工具 图片.png 3.核心架构设计:MPP无共享架构 图片.png 图片.png 主从节点,主节点负责协调整个集群 一个数据节点可以配置多个节点实例(segment instances...分布,是从物理上把数据分散到各个SEGMENT上,这样更有利于并行查询。 分区,是从逻辑上把一个大表分开,这样可以优化查询性能。...非常适合向量计算、JIT架构。对大批量数据的访问和统计,效率更高。 读取很多列时,由于需要访问更多的文件,成本更高。例如查询明细。

    3.7K10

    【赵渝强老师】达梦数据库MPP集群的架构

    图片为了支持海量数据存储和处理等方面的需求,为高端数据仓库提供解决方案,达梦数据库提供了大规模并行处理MPP架构,以极低的成本代价,提供高性能的并行计算。...通过使用MPP可以解决以下问题:需要较高的系统性能支持以支持大量的复杂查询操作硬件束缚对数据库响应能力的影响降低数据库成本视频讲解如下:一、 DM MPP系统架构当前主流的数据库系统架构有完全共享、共享存储...完全不共享体系架构通过一个主节点执行并行查询。该架构的一个重要优势就是每个节点都有一个通往本地磁盘的独立通道,不但简化了体系,还提供良好的扩展性。...DM MPP采用的完全对等无共享体系架构,结合了完全无共享体系的优点,在此基础上又前进了一步,不采用增加主控制节点来协调所有并行处理的主从式方法,而是各个节点完全对等,更进一步简化了体系的实现,也消除了系统可能存在的主节点瓶颈问题...DM MPP的系统架构如下图所示。DM MPP中的每一个DM数据库服务器实例作为一个执行节点,简称EP。客户端可连接任意一个EP节点进行操作,所有EP对客户来说都是对等的。

    29710

    mpp query optimization

    其负责应用一些启发式规则,负责简化和标准化查询,无需改变查询的语义。 常见操作有:谓词和算子下推,视图展开,简化常量运算表达式,谓词逻辑的重写,语义的优化等。...optimizeUsing(select_query); } 2 Query Optimizer Physical Optimizer ,CBO 即通常我们所说的"Physical Optimizer",负责把内部查询表达转化成一个高效的查询计划...如下图所示,一个查询计划可以被认为是一个数据流图,在这个数据流图中,表数据会像在管道中传输一样,从一个查询操作符(operator)传递到另一个查询操作符。...transformer就是算子的概念,所有 transformer 被编排成一个流水线(pipeline) 3 Query Executor 查询执行器,负责执行具体的查询计划,从存储引擎中获取数据并且对数据应用查询计划得到结果...,它牺牲了较多的优化时间来换取更优的查询计划。

    1.7K50
    领券