首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

工具 | Python数据结构:树的基本概念

树的例子 树(Tree)在计算机科学里应用广泛,包括操作系统,图形学,数据库和计算机网络。树和真正的树有许多相似的地方,也包括根、树枝和叶子,它们的不同在于计算机中的树的根在顶层而它的叶子在底部。 在我们开始学习树之前,让我们先来看看几个常见的关于树的例子。首先让我们看看生物学中的分类。图 1 是一个动物分类的例子,从中我们可以看出树的几个特点。第一,这个例子说明树是分级的,这里分级的意思是树的顶层部分更加宽泛,而底部更加具体。在这个例子中,最上层的是“界”,它下面的一层(上层的子级)是“门”,然后是“纲”

010

图的割点、桥和双连通分支的基本概念

回到正题,首先介绍下什么是图的边连通度和点连通度。一般来说,点连通度是指对应一个图G,对于所有点集U属于V(G),也就是V(G)的子集中,使得G-U要么是一个非连通图,要么就是一个平凡图(即仅包含一个独立点的图),其中最小的集合U的大小就是图G的点连通度,有时候也直接称为图的连通度。通俗点说,就是一个图G最少要去掉多少个点会变成非连通图或者平凡图。当然对于一个完全图来说Kn来说,它的连通度就是n-1。 同理,边连通度就是对于一个非平凡图G,至少去掉多少条边才能使得该图变成非连通图。我们的问题就是,对于任意一个图,如何求该图的连通度以及边连通度?这跟最大流问题有什么联系? 简单起见,我们先说如何求一个图的边连通度lamda(G)。(基于无向图考虑) 对于图G,设u,v是图G上的两个顶点,定义r(u,v)为删除最少的边,使得u到v之间没有通路。将图G转换成一个流网络H,u为源点,v是汇点,边容量均为1,那么显然r(u,v)就是流网络的最小割,根据(二)里的介绍,其等于流网络的最大流。 但是,目前为止我们还没解决完问题,因为显然我们要求的边连通度lamda(G)是所有的点对<u,v>对应的r(u,v)中最小的那个值。这样的话我们就必须遍历所有的点对,遍历的的复杂度为O(n*n)。这显然代价太高,而事实上,我们也不必遍历所有点对。

01
领券