首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

MODIS数据的简介和下载(一)——MODIS数据简介

借最近上课实习上机内容,来介绍MODIS数据相关方面内容。本部分主要包括了MODIS数据的简介和下载的问题。本篇是第一部分,MODIS的简介。主要分为三个部分:1.MODIS传感器简介及参数;2.MODIS产品及命名规则;3.MODIS的典型应用。 1.MODIS传感器简介及参数 首先来纠正件很容易被误解的事,MODIS是传感器而不是卫星,尽管我们平常称呼的时候更习惯叫MODIS数据(以传感器来称呼),Landsat数据(以卫星来称呼)。MODIS传感器的全称为中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer),主要搭载在Terra和Aqua星上。 Terrra的简介如下(摘自百度百科和遥感集市): EOS(Earth Observation System)卫星是美国地球观测系统计划中一系列卫星的简称。经过长达8年的制造和前期预研究准备工作,第一颗EOS的上午轨道卫星于1999年12月18日发射升空,发射成功的卫星命名为Terra(拉丁语“地球”的意思),主要目的是观测地球表面。它是一个用一系列低轨道卫星对地球进行连续综合观测的计划。它的主要目的是:实现从单系列极轨空间平台上对太阳辐射、大气、海洋和陆地进行综合观测,获取有关海洋、陆地、冰雪圈和太阳动力系统等信息;进行土地利用和土地覆盖研究、气候的季节和年际变化研究、自然灾害监测和分析研究、长期气候变率和变化以及大气臭氧变化研究等;进而实现对大气和地球环境变化的长期观测和研究的总体(战略)目标。EOS卫星轨道高度为距地球705公里,目前的第一颗上午轨道卫星(Terra)过境时间为地方时10:30am左右,一天最多可以获得4条过境轨道资料。 Terra卫星于1999年12月18日发射成功,Aqua卫星于2002年5月4日发射成功。Terra为上午星,从北向南于地方时10:30左右通过赤道,Aqua为下午星,从南向北于地方时13:30左右通过赤道。两颗星相互配合每1-2天可重复观测整个地球表面,得到36个波段的观测数据 EOS系列卫星上的最主要的仪器是中分辨率成像光谱仪(MODIS),其最大空间分辨率可达250米。 对应的MODIS传感器的简介如下(摘自百度百科和遥感集市): MODIS是当前世界上新一代“图谱合一”的光学遥感仪器,有36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖。MODIS的多波段数据可以同时提供反映陆地表面状况、云边界、云特性、海洋水色、浮游植物、生物地理、化学、大气中水汽、气溶胶、地表温度、云顶温度、大气温度、臭氧和云顶高度等特征的信息。可用于对地表、生物圈、固态地球、大气和海洋进行长期全球观测。中分辨率成像光谱仪(MODIS)最大空间分辨率可达250米,扫描宽度2330公里。MODIS是CZCS、AVHRR、HIRS和TM等仪器的继续。MODIS是被动式成像分光辐射计。共有490个探测器,分布在36个光谱波段,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖。 MODIS仪器的地面分辨率为250m、500m和1000m,扫描宽度为2330km。 在对地观测过程中,每秒可同时获得11兆比特的来自大气、海洋和陆地表面信息,日或每两日可获取一次全球观测数据。 MODIS参数(摘自百度百科和遥感集市) 空间分辨率——250 m (1-2波段);500 m (3-7波段);1000 m (8-36波段) 扫描宽度——2330km 时间分辨率——1天 光谱波段——36个离散光谱波段,光谱范围宽,从0.4微米(可见光)到14.4微米(热红外)全光谱覆盖 。 轨道——705KM,降轨上午10:30过境,升轨下午1:30过境;太阳同步;近极地圆轨道 设计寿命——5年 2.MODIS产品及命名规则 按处理级别划分,可以分为以下5种: 0级产品:也称原始数据; 1级产品:指L1A数据,已经被赋予定标参数; 2级产品:经过定标定位后数据,本系统产品是国际标准 的EOS-HDF格式。包含所有波段数据,是应用比较广泛的一类数据。; 3级产品:在1B数据的基础上,对由遥感器成像过程产生的边缘畸变(Bowtie效应)进行校正,产生L3级产品; 4级产品:由参数文件提供的参数,对图像进行几何纠正,辐射校正,使图像的每一点都有精确的地理编码、反射率和辐射率。L4级产品的MODIS图像进行不同时相的匹配时,误差小于1个像元。该级产品是应用级产品不可缺少的基础; 5级及以上产品:根据各种应用模型开发L5级产品。

03

深度 | 如此逼真的高清图像居然是端到端网络生成的?GANs 自叹不如 | ICCV 2017

AI 科技评论按:生成式对抗性网络 GANs 是近几年最热门的机器学习范式之一,它“图像生成效果好”和“训练困难、效果不稳定”的特点吸引了许许多多研究者付出精力进行 GANs 的研究。虽然它在大尺寸图像和图像逼真程度方面的表现仍然有限,但仍然是目前最好的图像生成范式。 📷 所以当看到如此逼真的高分辨率生成图像的时候,我们几乎要以为这是 GANs 的新突破。虽然图中还有一些扭曲和不自然,但是细节和物体的结构已经比较完善。然而定睛一看,这样的效果居然是一个单向的端到端网络完成的! 介绍这项成果的论

05

MODIS数据介绍及下载

EOS(Earth Observation System) 卫星是美国地球观测系统计划中一系列卫星的简称。经过长达8年的制造和前期预研究准备工作,第一颗EOS的上午轨道卫星于1999年12月18日发射升空,发射成功的卫星命名为Terra(拉丁语“地球”的意思),主要目的是观测地球表面。它是一个用一系列低轨道卫星对地球进行连续综合观测的计划。它的主要目的是:实现从单系列极轨空间平台上对太阳辐射、大气、海洋和陆地进行综合观测,获取有关海洋、陆地、冰雪圈和太阳动力系统等信息;进行土地利用和土地覆盖研究、气候的季节和年际变化研究、自然灾害监测和分析研究、长期气候变率和变化以及大气臭氧变化研究等;进而实现对大气和地球环境变化的长期观测和研究的总体(战略)目标。

02

在小目标检测上另辟蹊径的SNIP

相信大家都或多或少的熟悉一些检测器,不知道你是否思考过这样一个问题?FPN的多特征图融合方式一定是最好的吗?如果你看过【CV中的特征金字塔】一,工程价值极大的ASFF这篇论文的话,你应该知道这篇论文的出发点就是如何对不同尺度的特征做自适应特征融合(感觉也可以叫作FPN+Attention),而非【CV中的特征金字塔】二,Feature Pyramid Network那样较为暴力的叠加(不知道这个说法是否稳妥,有意见欢迎来提)。而今天要介绍的这个SNIP(「An Analysis of Scale Invariance in Object Detection – SNIP」)算法,是CVPR 2018的文章,它的效果比同期的目标检测算法之CVPR 2018 Cascade R-CNN效果还好一些。为什么说这个算法是另辟蹊径呢?因为这个算法从COCO数据集开始分析,作者认为目标检测算法的难点在于「数据集中目标的尺寸分布比较大,尤其对小目标的检测效果不太好」,然后提出了本文的SNIP算法。

02
领券