在今年的Oracle Cloud World,Oracle宣布将发布一款数据库湖仓产品——MySQL HeatWave Lakehouse用以解决存储在数据库之外的文件数据等非结构化数据的查询和处理。
所以说,当公司业务有跨库分析时(一般情况是,业务数据库分布在各个部门),一些数据需要配合其他部门的数据进行关联查询,这个时候可以考虑Presto。但是目前,对于MySQL统计查询在性能上有瓶颈。可考虑将数据按时间段归档到HDFS中,以提高统计效率。
对于数据库,大多数表可以根据用户ID进行水平划分。切分不同用户的相关数据并存储在不同的数据库中。例如,通过2取模将所有用户ID存储在两个不同的数据库中。每一个与用户ID相关的表都可以这样切分。这样,基本上每个用户的相关数据都在同一个数据库中,即使需要关联,也可以很简单的关联。
mysql和redis的关系? 要根据具体的业务情景去选型: mysql存储在磁盘中 redis存储在内存中 redis适合存在一些比较热的数据,使用频繁的数据,比如下面的应用场景 排行榜 粉丝 关注 消息队列推送 数据库 降级处理 其作用是为了适应不同版本的sql,不同型号的硬件设备,做到向下兼容 通过日志文件分析 查看日志 如何进行分库分表(sharding) 数据库sharding,多表多数据适合做垂直切分;如果表不多,但是每张表的数据多适合做水平切分。 垂直切分:规则简单实施方便;根据不同的表来拆分
在服务做微服务改造后,原先单库join查询已经不能满足要求,每个拆分的微服务对应一个数据库实例,而且部署在不同的服务器上,那么解决“跨库查询”就势在必行了。
1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据。
作者:李博 , 链接: https://cnblogs.com/liboware/p/12740901.html
如今硬件的性价比越来越高,网络传输速度越来越快,数据库分层的趋势逐渐显现,人们已经不再强求用一个解决方案来解决所有的存储问题,而是通过分层,让缓存与数据库负责各自擅长的业务场景。
- 概念:分区是在数据库内部层面将一张大表的数据分割成多个更小的部分,每个部分称为一个分区。尽管从逻辑上看仍然是一个完整的表,但在物理层面上,数据被分布在不同的物理区块上,这些区块可以位于同一台服务器的不同硬盘分区,或甚至是不同服务器上。MySQL支持多种分区类型,如范围分区、列表分区、哈希分区等。
最近在推一些业务迈入MySQL 8.0,对很多同学来说,好像差别不大,对于我们来说却是一个质的变化,光看版本就能够感受出来,5.7-> 8.0,所幸我们3年前就迈入了5.7版本,多多少少也把5.7的特性都经历差不多了。
在云计算越来越火的今天,我们不难预测,云上的MySQL在未来的数据库市场也将是主流。 在很多人的理解中,云托管数据库服务是“暴利”。 而实际上,在这个海量数据大爆发的时代,开源版本的MySQL很难满足很多企业的业务需求,在某些场景下,无论是性能、安全还是稳定性,都面临着各种各样的问题,产品能力不足的云数据库MySQL也很难在竞争激烈的市场找到属于自己的舞台。 上周的一篇文章数据君分享了近期腾讯云MySQL入选顶会的故事,这一期想和大家谈谈,在应用场景下,这帮人又做了哪些事? 回顾腾讯云数据库MySQL的
Vitess,作为海外最为知名的分库分表产品,一直以来在国内声音不多。近期抽空了解下这个产品,特分享出来。本文部分内容取自Vitess官网https://vitess.io。
A云Polardb-x 1.0现已全面升级为Polardb-x 2.0,但Polardb-X 1.0有其自有特色,仍然有很多企业在使用Polardb-X 1.0方案。那么,当这些企业想将业务系统迁移至腾讯云时,该如何进行数据库选型?怎么样进行数据同步?其中又会涉及到哪些问题呢?
关系型数据库本身比较容易成为系统性能瓶颈,单机存储容量、连接数、处理能力等都很有限,数据库本身的“有状态性”导致了它并不像Web和应用服务器那么容易扩展。在互联网行业海量数据和高并发访问的考验下,聪明的技术人员提出了分库分表技术(有些地方也称为Sharding、分片)。同时,流行的分布式系统中间件(例如MongoDB、ElasticSearch等)均自身友好支持Sharding,其原理和思想都是大同小异的。
1. 达达系统架构升级经验总结 1.1. 概述 达达是全国领先的最后三公里物流配送平台。达达业务主要包含两部分:商家发单,配送员接单配送。 达达的业务规模增长极大,在1年左右的时间从零增长到每天近
可重复读解决了脏读和不可重复读的问题,但是可能会出现幻读的问题。在这个隔离级别下,同一个事务内的多次读取结果是一致的,不同事务之间的读取结果互不干扰。
对于分库分表来说,具体有两种方式:垂直拆分和水平拆分。 垂直拆分主要是业务的细化和独立,和业务联系比较密切。所以本文只讨论更通用的水平拆分。
答: • 支持 SQL 92 标准; • 支持 Mysql 集群,可以作为 Proxy 使用; • 支持 JDBC 连接多数据库; • 支持 NoSQL 数据库; • 支持 galera for mysql 集群,percona-cluster 或者 mariadb cluster,提供高可用性数据分片集群; • 自动故障切换,高可用性; • 支持读写分离,支持 Mysql 双主多从,以及一主多从的模式; • 支持全局表,数据自动分片到多个节点,用于高效表关联查询; • 支持独有的基于 E-R 关系的分片策略,实现了高效的表关联查询; • 支持一致性 Hash 分片,有效解决分片扩容难题; • 多平台支持,部署和实施简单; • 支持 Catelet 开发,类似数据库存储过程,用于跨分片复杂 SQL 的人工智能编码实现,143 行 Demo 完成跨分片的两个表的 JION 查询; • 支持 NIO 与 AIO 两种网络通信机制,Windows 下建议 AIO,Linux 下目前建议 NIO; • 支持 Mysql 存储过程调用; • 以插件方式支持 SQL 拦截和改写; • 支持自增长主键、支持 Oracle 的 Sequence 机制。
本次因为服务架构重构,表优化、重构,带来的任务就是需要从原来的mysql数据库中,读取原表数据(部分存在多张关联查询)然后通过调用API的服务方式灌入新的数据库表中(包含mysql、mongodb)。
http://www.searchdoc.cn/rdbms/mysql/dev.mysql.com/doc/refman/5.7/en/index.com.coder114.cn.html
读写分离与分库分表,分布式事务 MySql存储引擎,建表规范,事务级别,sql优化,读写分离思想等。 了解过读写分离吗? 你说读的时候读从库,现在假设有一张表User做了读写分离,然后有个线程在一个事务范围内对User表先做了写的处理,然后又做了读的处理,这时候数据还没同步到从库,怎么保证读的时候能读到最新的数据呢? 你如何保证系统的稳定性? 答:分布式的链路一般都很长,所以我们首先通过全链路压测,分析整个链路,到底是哪个节点出现瓶颈。如果是数据层出现瓶颈,那么可以考虑加缓存,读写分离等降低数据库压力,如
关键词:分库分表,路由机制,跨区查询,MySQL 数据变更,分表数据查询管理器与线程技术的结合,Cache
点击上方蓝字关注我们吧 作者简介:董泽锋,腾讯云数据库研发工程师,主要负责腾讯云TDSQL研发工作。 ---- 【导语】随着业务的增长,mysql中保存的数据会越来越多。此时,数据库很容易成为系统性能的一个瓶颈,单机存储容量、IO、CPU处理能力都有限,当单表的数据量达到1000W或100G以后,库表的增删改查操作面临着性能大幅下降的问题。分库分表是一种解决办法。 分库分表实际上就是对数据进行切分。我们一般可以将数据切分分为两种方式:垂直(纵向)切分和水平(横向)切分。 垂直切分 垂直切分常见有垂直分
文章摘要:当单表数据达到千万以上时,通过加索引或者表分区优化提升的效果就比较有限了,应该如何应对呢???
很多的时候,在Presto上对数据库跨库查询,例如Mysql数据库。这个时候Presto的做法是从MySQL数据库端拉取最基本的数据,然后再去做进一步的处理,例如统计等聚合操作。
MySQL分表分库是一种数据库架构设计的技术,在特定的场景下可以优化数据库性能和可扩展性。
分布式跨库查询时,可以尝试使用federated引擎,来创建远程表的映射,方便查询。 1.开启引擎 查询数据库是否支持 SHOW ENGINES; 有,说明支持,但是没有开启,开启一下: 配置文件添加
MongoDB是一个非常有前途的数据库,MongoDB官方对自己的定位是通用数据库,其实这个定位跟MySQL有些像。虽其流行度还远未达到MySQL的水平,但笔者有个可能不恰当的比较,MongoDB就像N年前的MySQL,随着时间的推移,会变得越来越强大,也会越来越流行。下面结合MongoDB的几大特色来谈谈MongoDB的适用场景。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
Vitess是用于部署,扩展和管理MySQL实例的大型群集的数据库解决方案。它在架构上可以像在专用硬件上一样有效地在公共或私有云架构中运行。它结合了NoSQL数据库的可伸缩性,并扩展了许多重要的MySQL功能。Vitess可以帮助您解决以下问题:
随着微服务这种架构的兴起,我们应用从一个完整的大的应用,切分为很多可以独立提供服务的小应用。每个应用都有独立的数据库。
我之前呆过一家创业工作,是做商城业务的,商城这种业务,表面上看起来涉及的业务简单,包括:用户、商品、库存、订单、购物车、支付、物流等业务。但是,细分下来,还是比较复杂的。这其中往往会牵扯到很多提升用户体验的潜在需求。例如:为用户推荐商品,这就涉及到用户的行为分析和大数据的精准推荐。如果说具体的技术的话,那肯定就包含了:用户行为日志埋点、采集、上报,大数据实时统计分析,用户画像,商品推荐等大数据技术。
很多小伙伴留言说让我写一些工作过程中的真实案例,写些啥呢?想来想去,写一篇我在以前公司从零开始到用户超千万的数据库架构升级演变的过程吧。
小红书是一个社区属性为主的产品,它涵盖了各个领域的生活社区,并存储海量的社交网络关系。
前段时间公司的师兄在面试候选人之后,发出了这样感慨:2023 年,企业太难招到人了!
《大数据量下,58同城mysql实践》 WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城将分享《大数据量下,58同城mysql实战》的主题,干货分享抢先看
腾讯关系型数据库-企业级MySQL(原CDB,腾讯云TencentDB for MySQL)达成了 百万核 和 百PB 的“双百”里程碑!存储规模同比增速高达 80% ,连续两年在全球 TOP5 公有云厂商中增速位列第一!作为腾讯云规模最大的数据库产品,在11月携手腾讯云数据库入选Gartner云数据库管理系统魔力象限,意味着腾讯云数据库进入全球顶级序列!截止目前,已经为Bilibili、水滴筹、小红书、微盟、富途证券、云集、畅游等多家大客户提供服务,支撑了618、双11等大型活动的突发保障,实现了1
数据库在业务体系不大的情况,一般都是单库出现,通过增加主从复制提高SLA。但当业务体量不断扩大,就需要考虑进行数据拆分来解决性能瓶颈问题。
MemSQL是一种内存数据库,可以提供比传统数据库更快的读写操作。即使它是一项新技术,它也会说MySQL协议,因此使用起来非常熟悉。
随着我们的系统运行,存储在关系型数据库的数据量会越来越大,系统的访问的压力也会随之增大,如果一个库中的表数据超过了一定的数量,比如说mysql中的表数据达到千万级别,就需要考虑进行分库分表;
其实说到这个问题,有些同学会有疑问,访问同instance 的有那么难吗? 估计用过SQL SERVER ,MYSQL的同学会提出这样的疑问, 而ORACLE的同学则会提出什么同一个instance
现在,社交媒体、电商网站以及短视频应用源源不断地产生大量多模态数据。这些数据包含了自然语言、视觉信号、声音信号等多种类型。由于单一模式的数据分析已经不能满足日益复杂的查询需求,如何高效利用这些多模态数据变得至关重要。
接上篇,上篇主要是从字段类型,索引,SQL语句,参数配置,缓存等介绍了关于MySQL的优化,下面从表的设计,分库,分片,中间件,NoSQL等提供更多关于MySQL的优化。
数据库设计规范 命名规范 基本设计规范 索引设计规范 字段设计规范 SQL开发规范 操作行为规范 命名规范 对象名称使用小写字母并用下划线分割 禁止使用MySQL保留关键字 见名识义,最好不超过32个
本文实例讲述了thinkPHP5框架实现多数据库连接,跨数据连接查询操作。分享给大家供大家参考,具体如下:
在立项之初,我们进行了大量解决方案的对比,深入了解了业界的 scale-out(横向扩展)、scale-up(纵向扩展)等解决方案。但考虑到技术架构的前瞻性、发展潜力、社区活跃度以及服务本身与 MySQL 的兼容性,我们最终敲定了基于 TiDB 数据库进行二次开发的整体方案,并与 PingCAP 官方和开源社区进行深入合作的开发模式。
汇总篇:http://www.cnblogs.com/dunitian/p/4822808.html#tsql 概 述:http://www.cnblogs.com/dunitian/p/60413
领取专属 10元无门槛券
手把手带您无忧上云