首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【科学计算包NumPy】NumPy数组的创建

    NumPy 是在1995年诞生的 Python 库 Numeric 的基础上建立起来的,但真正促使 NumPy 的发行的是 Python 的 SciPy 库。...于是, SciPy 的开发者将 SciPy 中的一部分和 Numeric 的设计思想结合,在 2005 年发行了 NumPy。   ...NumPy 的诞生弥补了这些缺陷,它提供了两种基本的对象: ndarray :是储存单一数据类型的多维数组。 ufunc :是一种能够对数组进行处理的函数。   ...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...结束值;生成的元素不包括结束值; num 要生成的等间隔样例数量 a3 = np.linspace(0,100,11) # 注意:连同首尾共11个端点,10个区间(最后一个参数表示数组中元素的数量

    1.4K00

    NumPy之:NumPy简介教程

    简介 NumPy是一个开源的Python库,主要用在数据分析和科学计算,基本上可以把NumPy看做是Python数据计算的基础,因为很多非常优秀的数据分析和机器学习框架底层使用的都是NumPy。...安装NumPy 有很多方式可以按照NumPy: pip install numpy 如果你使用的是conda,那么可以: conda install numpy 或者直接使用Anaconda....在应用程序中这样做没有什么问题,但是如果是在科学计算中,我们希望一个数组中的元素类型必须是一致的,所以有了NumPy中的Array。 NumPy可以快速的创建Array,并且对其中的数据进行操作。...NumPy中的Array要比Python中的List要快得多,并且占用更少的内存空间。...可以创建等分的数组: In [5]: np.linspace(0, 10, num=5) Out[5]: array([ 0. , 2.5, 5. , 7.5, 10. ]) 默认情况下创建的数组内容类型是

    2.4K41

    NumPy之:NumPy简介教程

    简介 NumPy是一个开源的Python库,主要用在数据分析和科学计算,基本上可以把NumPy看做是Python数据计算的基础,因为很多非常优秀的数据分析和机器学习框架底层使用的都是NumPy。...安装NumPy 有很多方式可以按照NumPy: pip install numpy 如果你使用的是conda,那么可以: conda install numpy 或者直接使用Anaconda....在应用程序中这样做没有什么问题,但是如果是在科学计算中,我们希望一个数组中的元素类型必须是一致的,所以有了NumPy中的Array。 NumPy可以快速的创建Array,并且对其中的数据进行操作。...NumPy中的Array要比Python中的List要快得多,并且占用更少的内存空间。...可以创建等分的数组: In [5]: np.linspace(0, 10, num=5) Out[5]: array([ 0. , 2.5, 5. , 7.5, 10. ]) 默认情况下创建的数组内容类型是

    1.4K30

    【科学计算包NumPy】NumPy数组的基本操作

    一、数组的索引和切片 (一)数组的索引 首先,导入 NumPy 库。 import numpy as np 一维数组的索引与 Python 列表的索引用法相同。...[21 22 23] [31 32 33]] ************* [[ 2 2 2] [12 12 12] [22 22 22] [32 32 32]] (三)条件逻辑运算 在 NumPy...NumPy 提供的 where 方法可以克服这些问题。...z[idx]) 输出: 索引数组idx= [2, [1, 3]] 用idx做索引检索数组z得到的子集z[idx]= [92 52] 五、应用统计与排序函数 (一)常用统计函数 NumPy 中提供了很多用于统计分析的函数...格式:numpy.sort(a, axis, kind, order) 参数 使用说明 a 要排序的数组 kind 排序算法,默认为“quicksort” order 排序的字段名,可指定字段排序,默认为

    1.2K10

    NumPy之:NumPy简介教程

    简介 NumPy是一个开源的Python库,主要用在数据分析和科学计算,基本上可以把NumPy看做是Python数据计算的基础,因为很多非常优秀的数据分析和机器学习框架底层使用的都是NumPy。...安装NumPy 有很多方式可以按照NumPy: pip install numpy 如果你使用的是conda,那么可以: conda install numpy 或者直接使用Anaconda....在应用程序中这样做没有什么问题,但是如果是在科学计算中,我们希望一个数组中的元素类型必须是一致的,所以有了NumPy中的Array。 NumPy可以快速的创建Array,并且对其中的数据进行操作。...NumPy中的Array要比Python中的List要快得多,并且占用更少的内存空间。...可以创建等分的数组: In [5]: np.linspace(0, 10, num=5) Out[5]: array([ 0. , 2.5, 5. , 7.5, 10. ]) 默认情况下创建的数组内容类型是

    1.6K10
    领券