展开

关键词

小白轻松使用腾讯云GPU服务器部署OCR中英文识别服务

一直想搞一个GPU服务器来部署一下 PaddleOCR 的OCR识别服务,刚好腾讯云有一个活动,可以免费领取GPU服务器,可以来体验一自己部署OCR识别啦(CPU服务器也是可以部署的,但是识别速度不太理想 :地址 wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip #下载 unzip ppocr_img.zip #解压 开始体验OCR 识别 cd ppocr_img #进入刚才下载解压的图片目录 执行OCR识别 paddleocr --image_dir . 首先,下载PP-OCR的inference模型 # 下载并解压 OCR 文本检测模型 wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3 自己部署了一个OCR 识别服务,还是很有成就感的!

46773

革新OCR结构化技术应用,揭秘百度中英文OCR结构化模型StrucTexT预训练模型

百度提出OCR结构化模型StrucTexT,首次将中英文字段级多模态特征融入OCR结构化预训练进行特征增强,在6项OCR结构化数据集合上努力刷新了业界最好效果;同时基于StrucTexT打造数字化医疗理赔方案 业界首个中英文字段级多模态特征增强OCR结构化模型StrucTexT 现有的OCR结构化方案可以分为文本信息提取方法,图像信息提取方法和多模态信息提取方法: 文本信息提取方法:基于自然语言处理,提取图像中的文字序列 2.中英文场景上效果全面领先:覆盖4w+中英文常见字词,实现业界最大规模5千万OCR中英文场景数据预训练,深度挖掘不同模态间的语义关联。 4.票据排版复杂:医疗单据属于多类型文字混排,包含中英文、数字和特殊符号,文字识别难度大。 基于中英文字段级多模态特征增强的OCR结构化模型StrucTexT,可以对社会各行各业的办公流程输入、各类文档证件进行数字化录入,为促进无纸化办公、企业数字化转型、实现国家“双碳”目标奠定了良好的基础。

36510
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OCR material

    :基于CNN的实现 blog: http://blog.xlvector.net/2016-05/mxnet-ocr-cnn/ I Am Robot: (Deep) Learning to Break github: https://github.com/tmbdev/clstm caffe-ocr: OCR with caffe deep learning framework github: https ://github.com/pannous/caffe-ocr Digit Recognition via CNN: digital meter numbers detection ? github(caffe): https://github.com/SHUCV/digit Attention-OCR: Visual Attention based OCR ? github: https://github.com/da03/Attention-OCR umaru: An OCR-system based on torch using the technique

    63540

    飞桨文字识别模型套件PaddleOCR首次开源,带来8.6M超轻量中英文OCR模型!

    首阶段的开源套件推出了重磅模型:8.6M超轻量中英文识别模型。用户既可以很便捷的直接使用该超轻量模型,也可以使用开源套件训练自己的超轻量模型。 项目地址: https://github.com/PaddlePaddle/PaddleOCR 8.6M超轻量 中英文OCR模型开源 模型画像: 总模型大小仅8.6M 仅1个检测模型(4.1M )+1个识别模型(4.5M)组成 同时支持中英文识别 支持倾斜、竖排等多种方向文字识别 T4单次预测全程平均耗时仅60ms 支持GPU、CPU预测 可运行于Linux、Windows、MacOS等多种系统 << 滑动查看下一张图片 >> 可以看到,模型在中英文、数字、多角度文本上都能有很好的识别效果。 快速体验超轻量 中英文OCR模型 PaddleOCR已将该超轻量模型开源,感兴趣的小伙伴赶紧动手操练一下吧: 1.

    1.8K20

    OCR识别

    最近作者项目中用到了身份证识别跟营业执照的OCR识别,就研究了一下百度云跟腾讯云的OCR产品接口。 1.腾讯云OCR ---- 收费:身份证OCR和营业执照OCR接口,每个接口每个月各有1000次的免费调用 接口说明: 身份证OCR接口 -  https://cloud.tencent.com/document 2.百度OCR ---- 通过以下步骤创建OCR应用,作者当时在这一步花了很长时间 ? ? 创建完之后就可以拿到appId,API Key,Secret Key,就可以调用百度提供的api了 收费:身份证OCR和营业执照OCR接口,每个接口每天各有500次的免费调用 接口说明: 身份证OCR 营业执照OCR接口- https://cloud.baidu.com/doc/OCR/OCR-API.html#.E8.90.A5.E4.B8.9A.E6.89.A7.E7.85.A7.E8.AF.86

    4K40

    OCR技术简介

    OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。 OCR的技术路线 典型的OCR的技术路线如下图所示 ? 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 Attention OCR的网络结构[11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。 FOTS的总体结构[12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。 因此我们仍需要从传统方法中汲取经验,使其与深度学习有机结合进一步提升OCR的性能表现。

    1.2K50

    超级好用的OCR工具,GitHub Star 7.2K,强烈推荐!

    OCR 方向的工程师,一定需要知道这个 OCR 开源项目:PaddleOCR。 PPOCRLabel 通过内置高质量的 PPOCR 中英文超轻量预训练模型,可以实现 OCR 数据的高效标注。CPU 机器运行也是完全没问题的。话不多说,直接看 PPOCRLabel 效果演示: ? 最好的多语言模型效果 简单对比一下目前主流 OCR 方向开源 repo 的核心能力: 中英文模型性能及功能对比 ? 其中,多语言识别模型准确率对比(仅 EasyOCR 提供) ? 测试数据及环境说明: 中英文场景:针对 OCR 实际应用场景,包括合同,车牌,铭牌,火车票,化验单,表格,证书,街景文字,名片,数码显示屏等,收集的 300 张图像,每张图平均有 17 个文本框,PaddleOCR 良心出品的中英文文档教程 ? 别的不需要多说了,大家访问 GitHub 点过 star 之后自己体验吧: https://github.com/PaddlePaddle/PaddleOCR

    68410

    OCR技术简介

    OCR的应用场景 根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。 OCR的技术路线 典型的OCR的技术路线如下图所示 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 在传统OCR技术中,图像预处理通常是针对图像的成像问题进行修正。 [11] 端到端的OCR 与检测-识别的多阶段OCR不同,深度学习使端到端的OCR成为可能,将文本的检测和识别统一到同一个工作流中。 [12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。

    6.3K20

    OCR技术综述

    最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? 比如汉王OCR,百度OCR,阿里OCR等等,很多企业都有能力都是拿OCR技术开始挣钱了。 太多太多的应用了,OCR的应用在当今时代确实是百花齐放啊。 OCR的分类 如果要给OCR进行分类,我觉得可以分为两类:手写体识别和印刷体识别。 OCR流程 现在就来整理一下常见的OCR流程,为了方便描述,那就举文档中的字符识别为例子来展开说明吧。 针对传统OCR解决方案的不足,学界业界纷纷拥抱基于深度学习的OCR。 这些年深度学习的出现,让OCR技术焕发第二春。

    4.6K92

    它会不会成为OCR领域霸主?经过一个月的分析,我得出了这些结论

    (一)总结介绍 PaddleOCR是一款超轻量中英文识别模型 目标是打造丰富、领先、实用的文本识别模型/工具库 3.5M实用超轻量OCR系统,支持在服务器,移动,嵌入式和IoT设备之间进行培训和部署 同时支持中英文识别 模型简介 模型名称 推荐场景 检测模型 方向分类器 中英文超轻量OCR模型(8.1M) ch_ppocr_mobile_v1.1_xx 移动端&服务器端 推理模型 /预训练模型 推理模型 /预训练模型 中英文通用OCR模型(155.1M) ch_ppocr_server_v1.1_xx 服务器端 推理模型 /预训练模型 推理模型 /预训练模型 中英文超轻量压缩OCR模型(3.5M) ch_ppocr_mobile_slim_v1.1 简单对比一下目前主流OCR方向开源repo的核心能力 语种 预训练模型大小 F1-Score 端侧部署 自定义训练 支持pip安装 chineseocr_lite 中英文 4.7M 0.3899 支持 ,easyOCR的优势在于多语言支持,非常适合有小语种需求的开发者,但PaddleOCR支持的语种也越来越丰富,目前支持中英文、英文、法语、德语、韩语、日语等多国语言。

    1.5K62

    OCR技术浅析

    以深度学习兴起的时间为分割点,直至近五年之前,业界最为广泛使用的仍然是传统的OCR识别技术框架,而随着深度学习的崛起,基于这一技术的OCR识别框架以另外一种新的思路迅速突破了原有的技术瓶颈(如文字定位、 笔者针对业务中的身份证照片文字识别需求分别尝试了传统OCR识别框架及基于深度学习的OCR识别框架。下面就以身份证文字识别为例分别简要介绍两种识别框架。 传统OCR技术框架 如上图所示,传统OCR技术框架主要分为五个步骤: 首先文本定位,接着进行倾斜文本矫正,之后分割出单字后,并对单字识别,最后基于统计模型(如隐马尔科夫链,HMM)进行语义纠错。 在给定O序列情况下,通过维特比算法,找出最优序列S: 传统OCR冗长的处理流程以及大量人工规则的存在,使得每步的错误不断累积,而使得最终识别结果难以满足实际需求。接下来讨论基于深度学习的OCR。 可见,基于深度学习的OCR识别框架相比于传统OCR识别框架,减少了三个步骤,降低了因误差累积对最终识别结果的影响。 文本行检测,其又可分为水平行文字检测算法与倾斜文字行检测算法。

    3K10

    OCR 转 XSS

    光学字符识别 (OCR) 是从图像或任何文档(如 PDF)中以电子方式提取文本并以多种方式重复使用的过程,例如全文搜索、发票处理、文档验证等。 我将tesseract用于 OCR 以及一个简单的烧瓶服务器,该服务器接受图像作为输入,它解析并将提取的内容反射回管理员或其他用户。你可以在这里找到代码。 开始点击 python ocr.py 现在访问本地服务器 127.0.0.1:5000 上传以上文件 现在访问 /admin/ocr/files 你会看到警报 image.png 同样,创建带有标签或盲 image.png 回复: image.png 修复: 如果您使用 OCR 服务,不仅要使用文件名,还要在将图像或 pdf 中提取的文本存储到数据库之前对其进行清理。 如果是,则可能在某个地方正在使用它,并且如果没有检查输出文本是如何反映的,那么它可能会导致 XSS,尤其是使用 OCR 服务的应用程序。

    12140

    Mysql 中英文排序

    61540

    RPA之眼:AI-OCR,Fax-OCR概述

    文丨马磊 OCR是一种与RPA机器人协作的一项重要技术,相当于机器人的眼睛。 OCR是英文“Optical Character Recognition/Reader”的简称,光学字符识别。 这就为RPA技术与OCR技术的协同合作提供了契机。 而RPA + OCR的情况下,只需实现扫描好纸质文件,OCR会自动读取扫描文件,将图片信息读取并写入Excel等文档中,然后RPA机器人运行,进行业务处理。 近年来, OCR引起了广泛关注,但目前的OCR软件存在精度不高和无法应对非固定文件模板等课题。未来通过在OCR中引入AI的深度机器学习等技术以后,相信一定会解决这个课题。 Fax-OCR是什么? OCR的注意点 OCR技术确实可以自动实现数据的文本化,也是一项非常有效的效率改善的技术手段,但是现在的阶段OCR并非无所不能。 1、无法对应多份文件。

    45520

    Github Star 8.4K,超级好用的OCR数据合成与半自动标注工具,强烈推荐!

    一、导读 OCR方向的工程师,一定需要知道这个OCR开源项目:PaddleOCR 短短几个月,累计Star数量已超过8.5K, 频频登上Github Trending 日榜月榜, 称它为 OCR方向目前最火的 PPOCRLabel通过内置高质量的PPOCR中英文超轻量预训练模型,可以实现OCR数据的高效标注。 CPU机器运行也是完全没问题的。 话不多说,直接看PPOCRLabel效果演示: ? 五、最好的多语言模型效果 简单对比一下目前主流OCR方向开源repo的核心能力: 中英文模型性能及功能对比 ? 其中,部分多语言模型性能及功能(F1-Score)对比(仅EasyOCR提供) ? 六、PP-OCR开发体验再升级 动态图和静态图是深度学习框架常用的两种模式。 七、良心出品的中英文文档教程 ? 别的不需要多说了,大家访问GitHub点过star之后自己体验吧: https://github.com/PaddlePaddle/PaddleOCR ?

    54320

    Tesseract ocr文字识别

    https://blog.csdn.net/haluoluo211/article/details/77776697 前面很早做了图片的文字识别主要用到了开源框架Tesseract,当然做OCR new Tesseract(); // JNA Interface Mapping String fontPath = "E:/char_recongition/Tesseract-OCR / JNA Interface Mapping try { String fontPath = "E:/char_recongition/Tesseract-OCR

    1.7K20

    Tesseract-OCR helloworld

    Ubuntu installation sudo apt install tesseract-ocr pip install pytesseract # Jetson Nano # sudo vim ~ bashrc # export OPENBLAS_CORETYPE=ARMV8 Python test import cv2 import pytesseract import numpy as np def ocr_tesseract kernel, iterations=1) return pytesseract.image_to_string(img) if __name__ == '__main__': print(ocr_tesseract installation https://github.com/UB-Mannheim/tesseract/wiki Github official page https://github.com/tesseract-ocr /tesseract/ Google cloud https://cloud.google.com/vision/docs/ocr 中文识别 https://bbs.huaweicloud.com/blogs

    18220

    相关产品

    • 文字识别

      文字识别

      文字识别(OCR)基于腾讯优图实验室世界领先的深度学习技术,将图片上的文字内容,智能识别成为可编辑的文本。OCR 支持身份证、名片等卡证类和票据类的印刷体识别,也支持运单等手写体识别,支持提供定制化服务,可以有效地代替人工录入信息。

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券