展开

关键词

OCR技术简介

OCR技术路线 典型的OCR技术路线如下图所示 ? 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 在传统OCR技术中,图像预处理通常是针对图像的成像问题进行修正。常见的预处理过程包括:几何变换(透视、扭曲、旋转等)、畸变校正、去除模糊、图像增强和光线校正等。 得益于CNN强大的学习能力,配合大量的数据可以增强特征提取的鲁棒性,面临模糊、扭曲、畸变、复杂背景和光线不清等图像问题均可以表现良好的鲁棒性。[1] ? FOTS的总体结构[12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。 另一方面,作为深度学习的推动力,数据起到了至关重要的作用,因此收集广泛而优质的数据也是现阶段OCR性能的重要举措之一。

1.2K50

OCR技术简介

OCR技术路线 典型的OCR技术路线如下图所示 其中影响识别准确率的技术瓶颈是文字检测和文本识别,而这两部分也是OCR技术的重中之重。 在传统OCR技术中,图像预处理通常是针对图像的成像问题进行修正。 得益于CNN强大的学习能力,配合大量的数据可以增强特征提取的鲁棒性,面临模糊、扭曲、畸变、复杂背景和光线不清等图像问题均可以表现良好的鲁棒性。 [12] 总结 尽管基于深度学习的OCR表现相较于传统方法更为出色,但是深度学习技术仍需要在OCR领域进行特化,而其中的关键正式传统OCR方法的精髓。 另一方面,作为深度学习的推动力,数据起到了至关重要的作用,因此收集广泛而优质的数据也是现阶段OCR性能的重要举措之一。

6.2K20
  • 广告
    关闭

    腾讯云图限时特惠0.99元起

    腾讯云图是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示大量数据,低门槛快速打造出专业大屏数据展示。新用户0.99元起,轻松搞定数据可视化

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OCR技术综述

    比如汉王OCR,百度OCR,阿里OCR等等,很多企业都有能力都是拿OCR技术开始挣钱了。 从的模块总结而言,一套OCR流程可以分为: 版面分析 -> 预处理-> 行列切割 -> 字符识别 -> 后处理识别矫正 从上面的流程图可以看出,要做字符识别并不是单纯一个OCR模块就能实现的( 杀器:基于深度学习下的CNN字符识别 上面提到的OCR方法都有其有点和缺点,也正如此,他们也有各自特别适合的应用场景。 针对传统OCR解决方案的不足,学界业界纷纷拥抱基于深度学习的OCR。 这些年深度学习的出现,让OCR技术焕发第二春。 当然用深度学习做OCR并不是在每个方面都很优秀,因为神经网络的训练需要大量的训练数据,那么如果我们没有办法得到大量训练数据时,这种方法很可能就不奏效了。

    4.6K92

    OCR技术浅析

    以深度学习兴起的时间为分割点,直至近五年之前,业界最为广泛使用的仍然是传统的OCR识别技术框架,而随着深度学习的崛起,基于这一技术OCR识别框架以另外一种新的思路迅速突破了原有的技术瓶颈(如文字定位、 笔者针对业务中的身份证照片文字识别需求分别尝试了传统OCR识别框架及基于深度学习的OCR识别框架。下面就以身份证文字识别为例分别简要介绍两种识别框架。 传统OCR技术框架 如上图所示,传统OCR技术框架主要分为五个步骤: 首先文本定位,接着进行倾斜文本矫正,之后分割出单字后,并对单字识别,最后基于统计模型(如隐马尔科夫链,HMM)进行语义纠错。 下面介绍基于传统OCR框架处理身份证文字识别: 身份证识别技术流程与上述框架稍微有所差异。对该问题,已知先验信息:a.证件长宽固定;b.字体及大小一致;c.文本相对于证件位置固定;d.存在固定文字。 基于深度学习的OCR识别框架 目前,从技术流程上来说,主要分为两步,首先是检测出图像中的文本行,接着进行序列识别。

    3K10

    腾讯云大学咖分享 | 解密OCR文字识别技术

    腾讯云大学咖分享之解密OCR文字识别技术 课程讲师:腾讯云高级工程师 彭碧发 讲师简介:毕业于华中科技大学,负责智能图像相关AI产品,熟悉AI视觉工程化,对计算机图像处理有一定的理解,现担任腾讯云大数据及人工智能产品中心高级工程师 [iz5ecfu91m.png] OCR通俗来说就是让计算机看图识字的技术,比如在生活中,使用手机可以对身份证进行拍照,并通过一种技术将身份证照片上的文字自动转换成文本信息,这种技术就是OCR其中一种应用场景 产品架构则主要由数据层、服务层、平台层和应用层四个层次组成。在平台层方面,这次直播课主要讲的时图片OCR,像身份证识别、手写体识别等功能,开发者都可以通过API接口和SDK的形式去使用。 [13j5e6g9o2.png] [swlpepk9xt.png] 关于腾讯云OCR技术,主要介绍OCR工程化和引擎。 腾讯云大学咖分享邀请行业技术咖,为你提供免费、专业、行业最新技术动态分享。

    1.2K50

    OCR文字识别技术

    OCR,作为一种自动解读这种图像符号的技术,毫无疑问将是下阶段大数据发展的大方向。 因为随着移动互联网的繁荣发展,社会已经迎来了移动应用井喷时代,而出于对业务模式创新,以及用户体验优化的追求,以前很多依赖特定仪器才能实现的技术和操作开始适配到移动端, OCR技术就是这股移动化浪潮中相当受到瞩目的技术之一 从身份证识别、银行卡识别、车牌识别到名片识别、文档识别等各种形式的识别OCR都能轻松搞定。现在你只要用手机对准这些进行拍照扫描,OCR技术瞬间就能将图片中的文字转变为可编辑的文本信息。 在生活中尤其如今移动应用井喷的时代,摄像头已经成为数据采集最主要的入口,更多的非结构化数据需要转化为前后台可检索的数据,这个转化的过程就需要OCR技术大显身手。 全球数据信息量呈指数式爆炸增长之势,随处可见大数据的影响,顺应移动互联网大潮,OCR技术无论是面向行业用户还是面向普通用户都呈现出移动化的趋势。

    77120

    数平精准推荐 | OCR技术数据

    导语:深度学习在OCR领域的成功应用需要大量数据,数平精准推荐团队利用图像增强,语义理解,生成对抗网络等技术生成高质足量的数据,为算法模型提供燃料,帮助OCR技术服务在多种业务场景中快速迭代,提升效果。 OCR数据生成 对基于深度学习的技术而言,训练数据的数量很大程度上影响了技术效果。 在计算机视觉领域,数据机器生成主要可粗略的分为三种类型:底层的图像处理技术,中间层的图像理解加人为规则,以及高层的端到端图像数据生成,OCR技术数据生成同样遵循这三类。 除OCR外,计算机视觉乃至整个机器学习领域,尽管数据驱动这个词被无数次提到,但真正能够释放数据驱动能力的产品或技术服务依然寥寥无几。 腾讯TEG数平精准推荐团队OCR方面已经有了多年积累下的各项技术积累,愿意与任何有OCR技术相关需求的业务同事们进行交流合作,以TEG的使命:专业、合作、伙伴为目标,唯愿以持续打造业界一流的数据、算法、

    9K131

    OCR检测与识别技术

    数平精准推荐团队在OCR领域深耕细作多年,自研的基于深度学习方法的文本检测与识别技术多次在ICDAR竞赛数据集上刷新世界纪录,特别是在2017年举办的第14届ICDAR官方竞赛中,斩获了“COCO-TEXT 腾讯数平精准推荐团队一直致力于实时精准推荐、海量大数据分析及挖掘等领域的技术研发与落地。 在OCR方面,我们已经有了多年积累下的各项技术积累,愿意与任何有OCR技术相关需求的业务同行进行交流合作,持续打造业界一流的数据、算法和系统。 OCR识别模块属于多分类问题,对识别效果影响的因素包括:复杂背景、艺术字体、低分辨率、非均匀光照、图像退化、字符形变、多语言混合、文本行复杂版式、检测框字符残缺,等等。 (图4) 此论文另一贡献是提供了大规模合成数据的方法。标注文字的成本远高于标注人脸、物体等数据,高标注成本限制了OCR数据集规模。

    5K101

    OCR技术系列一】光学字符识别技术介绍

    注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献 什么是 OCR? 比如汉王OCR,百度OCR,阿里OCR等等,很多企业都有能力都是拿OCR技术开始挣钱了。 引擎Tesseract 使用大公司的OCR开放平台(比如百度),使用他们的字符识别API 传统方法做字符的特征提取,输入分类器,得出OCR模型 暴力的字符模板匹配法 杀器:基于深度学习下的CNN字符识别 当然用深度学习做OCR并不是在每个方面都很优秀,因为神经网络的训练需要大量的训练数据,那么如果我们没有办法得到大量训练数据时,这种方法很可能就不奏效了。 当然啦,除上面的场景文字识别外,历史悠久的手写体的识别到现在还是一件具有挑战的课题,在深度学习的浪潮下,手写体的识别已经前进了一步,但是尚且没达到印刷体识别那种可以商用的地步,所以啊,OCR的研究还得不断地进行下去

    2.1K30

    OCR -- 训练数据扩增的方法

    M_z def cliped_rand_norm(mu=0, sigma3=1): """ :param mu: 均值 :param sigma3: 3 倍标准差, 99% 的数据落在

    49030

    超全的OCR数据

    1、SynthText in the Wild dataset 数据集下载链接: http://www.robots.ox.ac.uk/~vgg/data/scenetext/ 数据集介绍:一个综合生成的数据集 此数据集基于MSCOCO数据集。 数据集分为训练集和测试集两部分,训练集包含从原始数据集中随机选择的300个图像,其余200个图像构成测试集,此数据集中的所有图像都已完全注释。 ? 5、ICDAR 数据集下载链接:https://rrc.cvc.uab.es/ ICDAR作为一个Challenge性质的平台,包含了2011~2019年各类OCR相关的数据集。 ? ? 6、Reading Chinese Text in the Wild(RCTW-17) 数据集下载链接:http://rctw.vlrlab.net/dataset/ 数据集介绍:主要包括12000多张图片的数据

    3K10

    ocr手机扫描银行卡的技术

    手机扫描银行卡的技术应用背景 为了提高在移动终端上输入银行卡号的速度和准确性,我公司结合银行、保险、金融P2P及第三方支付等行业对自动识别银行卡号的迫切需求,推出手机扫描银行卡的技术SDK,各类APP只需集成手机扫描银行卡的技术 手机扫描银行卡的技术SDK可支持Android、iOS主流移动操作系统,APP集成手机扫描银行卡的技术SDK后,用户采用手机、平板电脑对银行卡进行拍摄识别即可自动识别银行卡号 手机扫描银行卡的技术技术功能特点 1.识别种类多:支持国内各个银行的卡,包括平面字体和凹凸字体; 2.识别速度快:单张手机扫描银行卡的技术速度小于1 秒; 3.银行卡OCR识别技术技术也可以部署在识别服务器上,可支持Linux 32/ 用户可部署到自有服务器上,APP可直接调用手机扫描银行卡的技术服务。 手机扫描银行卡的技术技术主要应用领域 1.金融保险:移动展业、移动查勘录入银行卡号; 2.银行:直销银行、手机银行绑卡; 3.移动支付:绑定银行卡支付; 4.金融P2P:绑定银行卡充值;

    50630

    数据技术分享:十开源的大数据技术

    数据已然成为当今热门的技术之一,开源让越来越多的项目可以直接采用大数据技术,下面就来盘点受欢迎的十开源的大数据技术。 ? 1.Hadoop——高效、可靠、可伸缩,能够为你的数据存储项目提供所需的YARN、HDFS和基础架构,并且运行主要的大数据服务和应用程序。 两个最重要的特性是其强大的用户界面和良好的数据回溯工具。堪称大数据工具箱里的瑞士军刀。 ? 4.Apache Hive 2.1——Hive是建立在 Hadoop 上的数据仓库基础构架。 它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop 中的大规模数据的机制。 5.Kafka——Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模网站中的所有动作流数据。它已成为大数据系统在异步和分布式消息之间的最佳选择。

    28530

    宜信OCR技术探索与实践​|直播速记

    宜信OCR技术探索与实践|完整视频回放 分享实录 一、OCR概述 1.1 OCR技术演进 [1595918263271005617.png] 传统图像,冈萨雷斯的图像处理。 1.2 OCR技术商业服务 [1595918294889031197.png] 身份证卡证类相对容易些,但是要做到复杂场景的,也不是那么容易。 发票、业务单据相对复杂,除了识别,更重要的是版面分析。 最近表格识别比较火,各家都在努力实现,微软的开放tablebank数据集 移动端backboneMobileNet,或者是tesseract+opencv 二、我们的业务场景 2.1 业务需求 [1595918327876090833 .png] 满足业务是第一需要,不同于大厂,对外服务API,要求并发那么强,多样性品类完备,我们更强调单品要做到尽量达到业务要求,更强调定制化,可以分布走,业务上可以给反馈不断改进。 后处理干了啥 3.2 算法概述——三板块 [1595918372189068039.png] 文字检测:把文字框住,缩小到最小范围内,从而降低识别难度。

    32920

    数据技术分享:十开源的大数据技术

    数据已然成为当今热门的技术之一,开源让越来越多的项目可以直接采用大数据技术,下面就来盘点受欢迎的十开源的大数据技术。 ? 1.Hadoop——高效、可靠、可伸缩,能够为你的数据存储项目提供所需的YARN、HDFS和基础架构,并且运行主要的大数据服务和应用程序。 两个最重要的特性是其强大的用户界面和良好的数据回溯工具。堪称大数据工具箱里的瑞士军刀。 ? 4.Apache Hive 2.1——Hive是建立在 Hadoop 上的数据仓库基础构架。 它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop 中的大规模数据的机制。 5.Kafka——Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模网站中的所有动作流数据。它已成为大数据系统在异步和分布式消息之间的最佳选择。

    52931

    数平精准推荐 | OCR技术之系统篇

    算法、数据、系统三位一体,随着算法的快速发展和数据的日益积累,系统也在高效而稳定地升级。 一、背景介绍 前面的系列文章分别介绍了算法和数据,如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。 算法、数据、系统三位一体,组合成完整的OCR在线服务。 六、结束语 我们推出了OCR技术系列文章总共包括了《OCR技术之检测篇》、《OCR技术之识别篇》、《OCR技术数据篇》、《OCR技术之系统篇》等4篇文章,希望通过这些文章能够与大家一同探讨OCR领域的一些技术与应用 在后续的工作中,团队也将继续在OCR领域深耕细作,不断前行,持续提升技术水平与服务质量,为OCR技术的发展贡献微薄之力。

    1.7K50

    数据5关键处理技术

    云计算技术、物联网等技术快速发展,多样化已经成为数据信息的一项显著特点,为充分发挥信息应用价值,有效存储已经成为人们关注的热点。 一)大数据面临的存储管理问题 ●存储规模数据的一个显著特征就是数据量大,起始计算量单位至少是PB,甚至会采用更大的单位EB或ZB,导致存储规模相当。 这就需要对数据的存储技术和存储模式进行创新与研究,跟上数字化存储的技术的发展步伐,给用户提供一个具有高质量的数据存储体验。 大数发掘技术,目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术 了解跟多相关 大数据培训 技术知识,欢迎关注小编。

    78330

    干货 | OCR技术在携程业务中的应用

    作者简介 袁秋龙,携程度假大数据AI研发团队实习生,专注于计算机视觉的研究和应用。在实习期间致力于度假图像智能化工作,OCR问题为实习期主要做的研究。 以携程业务为例,在供应商资质鉴定,商家产品上传,产品展示等多个环节都涉及到计算机视觉技术的应用,其中包括文字识别(Optical Character Recognition,OCR)/场景文字识别(SceneText 二、OCR OCR技术由两方面组成,分别为文字的检测和文字内容的识别,如图1所示。 图1 图像中的文字检测和识别过程 三、OCR在携程业务中的技术方案 我们的方案也是由两部分组成的,首先是对图片中的文字进行检测,然后对检测出的文字内容进行识别。 合成数据在文本框检测阶段的模型训练和文本内容识别阶段都起到一个至关重要的作用,如何合成更加符合真实场景的数据用于OCR模型的训练是关键。此外,目前在自然场景下的服务还存在诸多不足,我们在持续改进中。

    81250

    OCR技术】大批量生成文字训练集

    如果是想训练一个手写体识别的模型,用一些前人收集好的手写文字集就好了,比如中科院的这些数据集。 适当的数据增强。 现在开始一步一步生成我们的3755个汉字的印刷体文字数据集。 额外的图像增强 第三步生成的汉字图像是最基本的数据集,它所做的图像处理仅有旋转这么一项,如果我们想在数据增强上再做多点东西,想必我们最终训练出来的OCR模型的性能会更加优秀。 至此,我们所需的印刷体汉字数据集已经成功生成完毕,下一步要做的就是利用这些数据集设计一个卷积神经网络做文字识别了!

    96820

    腾讯数平精准推荐 | OCR技术之识别篇

    腾讯数平精准推荐(Tencent-DPPR)团队一直致力于实时精准推荐、海量大数据挖掘等领域的技术研发与落地。 腾讯数平精准推荐团队在OCR领域深耕细作多年,自研的基于深度学习方法的文本检测与识别技术多次在国际权威ICDAR竞赛数据集上刷新世界纪录,特别是在2017年举办的第14届ICDAR官方竞赛中,斩获了“COCO-TEXT 一 相关工作 OCR识别模块属于多分类问题,对识别效果影响的因素包括:复杂背景、艺术字体、低分辨率、非均匀光照、图像退化、字符形变、多语言混合、文本行复杂版式、检测框字符残缺,等等。 (图4) 此论文另一贡献是提供了大规模合成数据的方法。标注文字的成本远高于标注人脸、物体等数据,高标注成本限制了OCR数据集规模。 因此,合成样本方法的出现,有效缓解了深度网络对于OCR真实标注数据的依赖,极大推动了OCR识别领域的深度算法的发展。

    8.2K2820

    相关产品

    • 大数据可视交互系统

      大数据可视交互系统

      腾讯云大数据实时可视交互系统 [RayData],基于数据实时渲染技术,利用各种技术从大规模数据通过本系统,实现云数据实时图形可视化、场景化以及实时交互,让使用者更加方便地进行数据的个性化管理与使用。

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭

      扫码关注云+社区

      领取腾讯云代金券