颜色空间,常见的有三种模式: 灰色图 BGR HSV 备注:在opencv里面,BGR,这个顺序要注意的,常见的是RGB的称呼 经常用到的 两种:BGR↔Gray 和 BGR↔HSV 函数是:cv2....cvtColor(input_image ,flag), 其中 flag是转换类型 对于 BGR↔Gray 的转换,使用的 flag 就是 cv2.COLOR_BGR2GRAY 对于 BGR↔HSV...的转换,我们用的 flag 就是 cv2.COLOR_BGR2HSV 注意:在 OpenCV 的 HSV 格式中, H(色彩/色度)的取值范围是 [0,179], S(饱和度)的取值范围 [0,255
code 表示转换的类型。 6.2 注意 HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。 OpenCV中有超过150种颜色空间转换方法。...如果你要将OpenCV值和它们比较,你需要将这些范围标准化。...7.2.1 代码 彩色图像模式读取图片; 显示读取的原图; 使用 cv.cvtColor 将原图转换为 GRAY 类型; 显示 GRAY 类型图像; 使用 cv.cvtColor 将第三步转换的图片逆转为...当三通道彩色图像转换为了单通道灰度图像,信息损失,不可逆转为三通道彩色图像。...OpenCV中有超过150种颜色空间转换方法。 最广泛使用的是BGR↔灰色和BGR↔HSV。 不同的软件使用不同的规模。 如果你要将OpenCV值和它们比较,你需要将这些范围标准化。
OpenCV图像转素描 我们在一些相机APP的功能里会看到有把照片转换为素描效果的,看起来就很高大上的感觉,今天我们也用OpenCV实现一下这个效果。 实现效果 ?...先上一张经典的Lena的图片转换为素描效果的图片,左边是原图的效果,右边就是我们通过OpenCV的几行代码实现的一个素描的效果。...# 实现流程 1 图像去色(转为灰度图) 2 图像取反 3 将取反后的图像进行高斯模糊 4 去色后的图像(灰度图)和取反模糊后的图像以混合模式为颜色减淡进行融合 代码实现 微卡智享 新建一个opencvsrctosumiao...的项目,配置参见《VS2017配置OpenCV通用属性》 ?...完整代码 #includeopencv2/opencv.hpp> #include using namespace cv; using namespace std; int main
最近想对OpenCV进行系统学习,看到网上这份教程写得不错,于是跟着来学习实践一下。...https://github.com/zstar1003/OpenCV-Learning 色彩转换 颜色空间转换 常见的色彩空间包括:GRAY 色彩空间(灰度图像)、XYZ 色彩空间、YCrCb...公式为 OpenCV提供了函数cv.cvtColor()可以将图像从一个颜色空间转换为另一个颜色空间。...:颜色空间转换代码,详见 ColorConversionCodes dst:输出图像,大小和深度与 src 相同 dstCn:输出图像的通道数,0 表示由src和code自动计算 示例程序: """ 颜色空间转换...reverser_hue", image) # cv2.waitKey() image = cyberpunk(image) cv2.imshow("cyberpunk", image) cv2
同形转换 我们所常见的都是以这样的方式来处理图像:检测斑点,分割感兴趣的对象等。我们如何将它们从一种形式转换为另一种形式来处理这些图像呢?通过单应矩阵快速转换图像可以实现这个需求。...单应性 单应性,也被称为平面单应性,是两个平面之间发生的转换。换句话说,它是图像的两个平面投影之间的映射。它由同构坐标空间中的3x3转换矩阵表示。在数学上,同质矩阵表示为: ? 在坐标标平面上: ?...是否可以仅使用图像中的信息来做到这一点?在这种情况下,你们要做的就是找到木板的角并将其设置为原坐标。之后,在要进行单应性投影的同一图像中,选择要显示变换后的图像的目标坐标。...既然我们已经做到了,那么考虑到目标图像来自其他图像的情况,我们又如何处理另一个图像呢?让我们来看这个例子。考虑一下这张图像,一场篮球比赛。...首先,从上面的图像(即半场的角)确定原坐标。然后,从另一幅与上述图像完全不同的图像中找到我们的目的地坐标。
Halcon 中的图像数据结构为 HImage, OpenCV 中的图像为 Mat,使用中经常需要相互转换的情况,本文记录转换方式。...转换规则 halcon、opencv 和 C++图像内存数据处理机制有差异,在进行相互转换的时候需要注意内存数据排列问题,否则可能出现花图或者多出黑边等现象。...Halcon 的 HImage 和 OpenCV 的 Mat 都是连续存储图像数据的,HImage 存储数据是每个通道的数据存在一起的, Mat 的数据是一个像素点中的多个通道数据连续存在一起的。...,OpenCV 的 Mat 图像内存仍然是连续的,HImage 是多个单通道图像的组合,因此内存组织上有些区别,需要逐个像素整理 HalconCpp::HTuple pointerR, pointerG...当图像深度不为 8 bits 时,Mat 图像为连续的内存,HImage 图像仍为多个通道单独处理内存的情况,内存拷贝时需要注意转换前后的图像的位深度一致 示例代码 #include
16位/ 32位图像,否则将其转换为8位 cv2.IMREAD_ANYCOLOR(4):以任何可能的颜色格式读取图像 retval:读取的 OpenCV 图像,nparray 多维数组 注意事项: OpenCV...flags:读取图片的方式,可选项: cv2.IMREAD_COLOR(1):始终将图像转换为 3 通道BGR彩色图像,默认方式 cv2.IMREAD_GRAYSCALE(0):始终将图像转换为单通道灰度图像...如果缓冲区为空或损坏,或者使用了错误的标志,函数将无法正确解码图像。 cv2.imdecode() 返回的是一个 NumPy 数组,该数组存储了解码后的图像数据。...图像的保存 cv2.imwrite() 语法结构: retval = cv2.imwrite(filename, img [, params]) filename:要保存的文件的路径和名称,包括文件扩展名...cv2.imwrite('output.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), 90]) # 保存 PNG 图像并指定压缩级别为 9 cv2.imwrite
OpenCV在诸多领域得到了广泛的应用,例如物体检测、图像识别、运动跟踪、增强现实(AR)、机器人等场景。我们在本书中需要对图像进行处理时,需要用到OpenCV库。...彩色图片是可以转换为灰度图像的,虽然在转换为灰度图像的过程中丢失了颜色信息,但是却保留了图片的纹理、线条、轮廓等特征,这些特征往往比颜色特征更重要。...下面我们简述一下在OpenCV中将彩色图片转换为灰度图片的过程。...在代码清单②中做了一个实验:尝试将灰度图片gray_img 再次转换为BGR形式的彩色图片,发现转换后的图片无法恢复原先不同颜色通道的数值,OpenCV所采用的方法是将所有的颜色通道全都置成相同的数值,...这也说明了从彩色图片转换到灰度图片的计算是单向的,使用简单的算法将灰度图片恢复为彩色图片是很难的,OpenCV中所采用的转换过程只是形式上的转换,并不是真正将灰度图片转换为彩色形式。
图像的翻转 flip(src,flipCode) flipCode = 0 表示上下翻转 flipCode > 0 表示左右翻转 flipCode < 0 上下 + 左右 上下翻转 import...)) cv2.imshow('lufei',img) cv2.imshow("lu,",lufei) cv2.waitKey(0) cv2.destroyAllWindows() 显示结果: 图像的翻转
绘制完后,还需要把matplotlib的figure对象转换为numpy.ndarray 格式的对象,方便和原图进行比较。有时候为了可视化的美观,需要验证保证转换后的图像与原始图像大小一致。...函数来将图像转换为string,在用numpy的fromstring函数将string转换为np.ndarray,即为我们所求。...(), dtype=np.uint8) # 设置numpy数组大小为图像大小 vis_img.shape = (h, w, 3) plt.close() cv2.imwrite('/path/to/...此外由于matploltlib的imshow需要RGB格式的图像,而OpenCV图像格式为BGR,需要做转换。 4....() cv2.imwrite('/path/to/vis_img.jpg', vis_img) 需要注意的是,直接执行这段代码虽然可以得到你想要的结果,但本身是没有意义的,最核心的matplotlib
图像融合 背景:图像融合是图像处理的一个基本问题,目的是将源图像中一个物体或者一个区域嵌入到目标图像生成一个新的图像。在对图像进行合成的过程中,为了使合成后的图像更自然,合成边界应当保持无缝。...但如果源图像和目标图像有着明显不同的纹理特征,则直接合成后的图像会存在明显的边界。 引入:基于泊松方程而引入的泊松融合求解像素最优值的方法,在保留了源图像梯度信息的同时,融合源图像与目标图像。...对比传统图像融合和泊松融合 传统的图像融合: 精确地选择融合区域:过程单调乏味且工作量大,常常无法得到好的结果。 Alpha-Matting:功能强大,但是实现复杂。...变分法的解释泊松图像编辑 表示融合图像块的梯度。...变分方程的意义表明我们的无缝融合是以源图像块内梯度场为指导,将融合边界上目标场景和源图像的差异平滑地扩散到融合图像块 I 中,这样的话,融合后的图像块能够无缝地融合到目标场景中,并且其色调和光照可以与目标场景相一致
Processing),旨在将图像信号转换成数字信号并利用计算机对其进行处理的过程。...将灰度图像转换为二值图像的过程,常通过依次遍历判断实现,如果像素>=127则设置为255,否则设置为0。 如图所示,一幅二值图像对应的矩阵。...将彩色图像转换为灰度图是图像处理的最基本预处理操作。如下图所示: 3.彩色图像 彩色图像是RGB图像,RGB表示红、绿、蓝三原色,计算机里所有颜色都是三原色不同比例组成的,即三色通道。...注意OpenCV读取图像是BGR存储显示,需要转换为RGB再进行图像处理。...希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。本文首发于CSDN专栏,为了帮助更多同学故在公众号同步更新,一起加油!
1、使用opencv保存图像cv2.imwrite(存储路径,图像变量[,存盘标识])存盘标识: cv2.CV_IMWRITE_JPEG_QUALITY 设置图片格式为.jpeg或者.jpg的图片质量...设置图片的格式为.webp格式的图片质量,值为0--100 cv2.CV_IMWRITE_PNG_COMPRESSION 设置.png格式的压缩比,其值为0--9(数值越大,压缩比越大),默认为3例如:cv2...img.png,图片品质为70import cv2cv2.namedWindow("Image") #创建窗口img = cv2.imread('ver.jpg')cv2.imshow("Image",img)cv2
frame就是每一帧的图像,是个三维矩阵。...表示视频的每一帧,1表示水平方向翻转,可以选择不同形式的反转,比如,0 — 垂直方向翻转;-1:水平、垂直方向同时翻转 waitKey()方法本身表示等待键盘输入,参数是1,表示延时1ms切换到下一帧图像...,对于视频而言;参数为0,如cv2.waitKey(0)只显示当前帧图像,相当于视频暂停,;参数过大如cv2.waitKey(1000),会因为延时过久而卡顿感觉到卡顿。
OpenCV旋转图像 要用到这两个函数: M = cv2.getRotationMatrix2D((cx, cy), angle, 1) # 旋转中心,角度degree,放大比例 image = cv2...10 resized = cv2.resize(copied, (rows // K, cols // K)) domain = connected_domain(resized, 20) # 缩小图像...,以便加速图像分割 for label in domain: if (area := len(domain[label])) < 1440000 // (K * K): continue
转换灰度图像 1.1 读取图像 import cv2 as cv # 读取图片 img = cv.imread('...../Resources/Photos/park.jpg') cv.imshow('Park', img) 1.2 使用OpenCV # 灰度化 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY... im3 = (100.0/255) * im + 100 # 将图像像素值变换到 100...200 区间 im4 = 255.0 * (im/255.0)**2 # 对图像像素值求平方后得到的图像...颜色空间转换 2.1 原图 import cv2 as cv import matplotlib.pyplot as plt img = cv.imread('.....参考 python图像数组操作与灰度变换
OpenCV可以检测图像的主要特征,然后提取图像的特征,使其成为图像描述符。 这些图像特征,也就是图像描述符,可以作为图像搜索的数据库。 个人感觉就是,和「以图搜图」有点像。 ?...也是一个很搞笑的片段... / 01 / 特征检测算法 这里简单介绍一下OpenCV常用的几种特征检测和提取算法。 Harris、FAST:用于检测角点的。...提了好几次特征了,那么什么是图像的特征呢? 图像特征就是指有意义的图像区域,具有独特性或易于识别性,比如角点、斑点以及高密度区。 角点可以通过OpenCV的cornerHarris来识别。...「SIFT」则是一种与图像比例无关的角点检测方法,尺度不变特征变换。 采用DoG和SIFT来检测关键点并提取关键点周围的特征。...剩下的太难了,以后慢慢了解~ / 02 / 图像检索 采用FLANN匹配,近似最近邻的快速库。 原始图片如下,为微博的Logo。 ? 目标图片如下,包含新浪微博的名称。 ? 代码如下。
显示图像 导入库: import cv2 import matplotlib.pyplot as plt 读取图片: cv2.imread('图片路径') 显示图片: plt.imshow...原因:opencv读取的图片的颜色通道不是标准的RGB(红绿蓝),而是BGR(蓝绿红)的排列顺序,所以读取到的图片的颜色与原始图片的颜色会发生差别! ...所以,我们尽量用我们的opencv自己去展示opencv读入道德图片 opencv读取并显示图像 import cv2 #导入cv2库 cv2.namedWindow('tupian',cv2.WINDOW_NORMAL
领取专属 10元无门槛券
手把手带您无忧上云