首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas的Groupby加速

在平时的金融数据处理中,模型构建中,经常会用到pandas的groupby。...我们的场景是这样的:我们希望计算一系列基金收益率的beta。那么按照普通的方法,就是对每一个基金进行groupby,然后每次groupby的时候回归一下,然后计算出beta。...其实思路很简单,就是pandas groupby之后会返回一个迭代器,其中的一个值是groupby之后的部分pandas。...函数,这个函数其实是进行并行调用的函数,其中的参数n_jobs是使用的计算机核的数目,后面其实是使用了groupby返回的迭代器中的group部分,也就是pandas的切片,然后依次送入func这个函数中...当数据量很大的时候,这样的并行处理能够节约的时间超乎想象,强烈建议pandas把这样的一个功能内置到pandas库里面。

4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    玩转 Pandas 的 Groupby 操作

    作者:Lemon 来源:Python数据之道 玩转 Pandas 的 Groupby 操作 大家好,我是 Lemon,今天来跟大家分享下 pandas 中 groupby 的用法。...Pandas 的 groupby() 功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚。 今天,我们一起来领略下 groupby() 的魅力吧。...首先,引入相关 package : import pandas as pd import numpy as np groupby 的基础操作 经常用 groupby 对 pandas 中 dataframe...('A').apply(np.mean) ...: # 跟下面的方法的运行结果是一致的 ...: # df.groupby('A').mean() Out[17]:...transform(func, *args, **kwargs) 方法简化了这个过程,它会把 func 参数应用到所有分组,然后把结果放置到原数组的 index 上(如果结果是一个标量,就进行广播):

    2K20

    Pandas的分组聚合groupby

    Pandas怎样实现groupby分组统计 groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数 import pandas as pd import numpy as np %matplotlib...,查询所有数据列的统计 df.groupby('A').sum() C D A bar -2.142940 0.436595 foo -2.617633 1.083423 我们看到: groupby...中的’A’变成了数据的索引列 因为要统计sum,但B列不是数字,所以被自动忽略掉 2、多个列groupby,查询所有数据列的统计 df.groupby(['A','B']).mean() C D A...二、遍历groupby的结果理解执行流程 for循环可以直接遍历每个group 1、遍历单个列聚合的分组 g = df.groupby('A') g pandas.core.groupby.generic.DataFrameGroupBy...上进行的; 三、实例分组探索天气数据 fpath = ".

    1.7K40

    pandas的iterrows函数和groupby函数

    2. pd.groupby函数 这个函数的功能非常强大,类似于sql的groupby函数,对数据按照某一标准进行分组,然后进行一些统计。...任何groupby操作都会涉及到下面的三个操作之一: Splitting:分割数据- Applying:应用一个函数- Combining:合并结果 在许多情况下,我们将数据分成几组,并在每个子集上应用一些功能...'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) 2.1 pandas...transform(func, args, *kwargs) 方法简化了这个过程,它会把 func 参数应用到所有分组,然后把结果放置到原数组的 index 上(如果结果是一个标量,就进行广播): grouped...# 应用于原数组的index上 ## 结果 Rank Year Points 0 -15.000000 -11.618950 12.843272 1 5.000000

    3.2K20

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...首先from相当于取出MySQL中的一张表,对比pandas就是得到了一个df表对象。...接着就是执行group分组条件,对比pandas就是写一个groupby条件进行分组。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...3)使用for循环打印groupby()分组对象中每一组的具体数据 x = {"name":["a","a","b","b","c","c","c"],"num":[2,4,0,5,5,10,15]}

    2.9K10

    关于pandas的数据处理,重在groupby

    一开始我是比较青睐于用numpy的数组来进行数据处理的,因为比较快。快。。快。。。但接触多了pandas之后还是觉得各有千秋吧,特别是之前要用numpy的循环操作,现在不用了。。。...果然我还是孤陋寡闻,所以如果不是初学者,就跳过吧: ''' 首先上场的是利用pandas对许多csv文件进行y轴方向的合并(这里的csv文件有要求的,最起码格式要一致,比如许多系统里导出的文件,格式都一样...=2018].index) b2=b2.drop(b2[b2.纬度>27.1604].index)##这个删除强烈推荐,我之前入门的时候完全靠循环,还是list循环。。。...doy=[] for ij in range(len(day)): a=month[ij]*32+day[ij] doy.append(a) b2['doy']=doy group=b2.groupby...([b2['经度'],b2['纬度'],b2['doy']],as_index=False) b5=group.mean()###这里就是groupby的统计功能了,除了平均值还有一堆函数。。。

    79920

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...首先from相当于取出MySQL中的一张表,对比pandas就是得到了一个df表对象。...接着就是执行group分组条件,对比pandas就是写一个groupby条件进行分组。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...3)使用for循环打印groupby()分组对象中每一组的具体数据 x = {"name":["a","a","b","b","c","c","c"],"num":[2,4,0,5,5,10,15]}

    3.2K10

    pandas之分组groupby()的使用整理与总结

    ,这时通过pandas下的groupby()函数就可以解决。...在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器。...groupby的作用可以参考 超好用的 pandas 之 groupby 中作者的插图进行直观的理解: 准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的使用...按照上面的思路理解后,再调用get_group()函数后得到的DataFrame对象按照列名进行索引实际上就是得到了Series的对象,下面的操作就可以按照Series对象中的函数行了。...REF groupby官方文档 超好用的 pandas 之 groupby 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/141267.html原文链接:https

    2.2K10

    python中fillna_python – 使用groupby的Pandas fillna

    大家好,又见面了,我是你们的朋友全栈君。 我试图使用具有相似列值的行来估算值....,这是相似的,如果列[‘three’]不完全是nan,那么从列中的值为一行类似键的现有值’3′] 这是我的愿望结果 one | two | three 1 1 10 1 1 10 1 1 10 1 2...我尝试过使用groupby fillna() df[‘three’] = df.groupby([‘one’,’two’])[‘three’].fillna() 这给了我一个错误....我尝试了向前填充,这给了我相当奇怪的结果,它向前填充第2列.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...three 0 1 1 10.0 1 1 1 40.0 2 1 1 25.0 3 1 2 20.0 4 1 2 20.0 5 1 2 20.0 6 1 3 NaN 7 1 3 NaN 标签:python,pandas

    1.8K30

    盘点一道使用pandas.groupby函数实战的应用题目

    一、前言 前几天Python青铜群有个叫【假装新手】的粉丝问了一个数据分析的问题,这里拿出来给大家分享下。...一开始以为只是一个简单的去重问题而已,【编程数学钟老师】大佬提出使用set函数,后来有粉丝发现其实没有想的这么简单。目前粉丝就需要编号,然后把重复的编号删除,但是需要保留前边的审批意见。...方法一 这个方法来自【(这是月亮的背面)】大佬提供的方法,使用pandas中的groupby函数巧妙解决,非常奈斯!...下面给出了一个优化代码,因为原始数据有空白单元格,如下图所示: 所以需要额外替换下,代码如下: data['审批意见'] = data['审批意见'] + ',' data = data.groupby...这篇文章基于粉丝提问,在实际工作中运用Python工具实现了数据批量分组的问题,在实现过程中,巧妙的运用了pandas.groupby()函数,顺利的帮助粉丝解决了问题,加深了对该函数的认识。

    61730

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...结合tqdm给apply()过程添加进度条 我们知道apply()在运算时实际上仍然是一行一行遍历的方式,因此在计算量很大时如果有一个进度条来监视运行进度就很舒服。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。

    5K10

    盘点一道Pandas中分组聚合groupby()函数用法的基础题

    一、前言 前几天在Python最强王者交流群有个叫【Chloé】的粉丝问了一个关于Pandas中groupby函数的问题,这里拿出来给大家分享下,一起学习。...对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df.groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式...这篇文章基于粉丝提问,针对Pandas中分组聚合groupby()函数用法的基础题问题,给出了具体说明和演示,顺利地帮助粉丝解决了问题。...总的来说,python中groupby函数主要的作用是进行数据的分组以及分组后的组内运算!...对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df.groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式

    85120

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组。...0], row['name'][1:]), axis=1)) print(a[:10]) print(b[:10]) 结合tqdm给apply()过程添加进度条 我们知道apply()在运算时实际上仍然是一行一行遍历的方式...tqdm:用于添加代码进度条的第三方库 tqdm对pandas也是有着很好的支持。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。

    5.8K31

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一、简介   pandas提供了很多方便简洁的方法...● 结合tqdm给apply()过程添加进度条   我们知道apply()在运算时实际上仍然是一行一行遍历的方式,因此在计算量很大时如果有一个进度条来监视运行进度就很舒服,在(数据科学学习手札53)Python...三、聚合类方法   有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组   要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...3.2 利用agg()进行更灵活的聚合   agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典

    5.1K60

    一日一技:pandas获取groupby分组里最大值所在的行

    如下面这个DataFrame,按照Mt分组,取出Count最大的那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e...方法2:用transform获取原dataframe的index,然后过滤出需要的行 print df.groupby(['Mt'])['Count'].agg(max) idx=df.groupby...方法3:idmax(旧版本pandas是argmax) idx = df.groupby('Mt')['Count'].idxmax() print idx df.iloc[idx]...('Mt', as_index=False).first() MtCountSpValue0s13a11s210d42s36f6 那问题又来了,如果不是要取出最大值所在的行,比如要中间值所在的那行呢...思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index的方法。不管怎样,groupby之后,每个分组都是一个dataframe。

    4.2K30

    Pandas中比较好用的几个方法

    话说我现在好久不做深度学习的东西了,做了一段时间是的NLP,以为可以去尝试各种高大上的算法,然而现在还并没有,反而觉得更像是做数据挖掘的。。...,可能也有人说,还有一种做法,就是用Groupby,好,Groupby是pandas中用来做分组统计的方法。...如果要对分组后的数据做统计分析,可以这样来做 import pandas as pd data = pd.read_table("test.txt") data_grouped = data.groupby...开始我也不会,那天突然有这样的想法,因为我的数据是在两列都有,然后我想统计两列的性质,无奈不知道怎么用,然后在stackflow上找到了答案。...删除Pandas中的NaN和空格 对于缺失数据的处理,无非两种方法,一种是直接删掉不要了,一种是添加进去一些别的数据,那Pandas怎么删除缺失值?

    1.8K50

    使用Pandas_UDF快速改造Pandas代码

    “split-apply-combine”包括三个步骤: 使用DataFrame.groupBy将数据分成多个组。 对每个分组应用一个函数。函数的输入和输出都是pandas.DataFrame。...要使用groupBy().apply(),需要定义以下内容: 定义每个分组的Python计算函数,这里可以使用pandas包或者Python自带方法。...下面的例子展示了如何使用这种类型的UDF来计算groupBy和窗口操作的平均值: from pyspark.sql.functions import pandas_udf, PandasUDFType...("double", PandasUDFType.GROUPED_AGG) def mean_udf(v): return v.mean() df.groupby("id").agg(mean_udf...注意:上小节中存在一个字段没有正确对应的bug,而pandas_udf方法返回的特征顺序要与schema中的字段顺序保持一致!

    7.1K20
    领券