请思考: 1 pandas的数据结构有哪些? 2 pandas如何读取csv格式的数据? 3 pandas如何获取数据子集?...一 数据子集 数据子集是原始数据集的部分观察或者变量或者部分观察与变量,这是一个数据选择过程(按着业务的目标选择所需的观察和变量)。...三 pandas获取数据子集方法 iloc:使用观察或者列名的位置获取切片 loc:使用观察或者列明的标签获取切片 四 获取数据子集范例 1 序列子集获取 代码 1import numpy as np...columns]) 5print(college.iloc[5, -4]) 6print(college.loc['The University of Alabama', 'PCTFLOAN']) 五 总结 获取数据子集是数据工作中重要的环节...,本文介绍pandas获取数据子集的方法,并且举例说明了iloc和loc的差异和使用。
数据预处理是数据科学管道的重要组成部分,需要找出数据中的各种不规则性,操作您的特征等。...Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
1.创建数据框 手动创建 DataFrame 的方法是将字典传递给 pandas 中的 DataFrame() 函数。 字典的键是列名,值是每列值。...df[['A','B']] ## A B ## x 1 4 ## y 2 5 ## z 3 6 练习:数据框提取列 用点号取子集的方法,输出 tips数据框中的 tip 列。...用方括号取子集的方法,输出tip数据框的sex列。...],['A','B']] #xy行,AB列 ## A B ## x 1 4 ## y 2 5 练习:数据框提取行 课程使用的示例数据是tips,来自seaborn包,内容如下: import...提取tips数据框中sex列为Female的行。 提取tips数据框中sex列为Female且total_bill大于15的行。
但是在实际应用中,并不是每一帧都是完整的画面,因为如果每一帧画面都是完整的图片,那么一个视频的体积就会很大。...这样对于网络传输或者视频数据存储来说成本太高,所以通常会对视频流中的一部分画面进行压缩(编码)处理。...P 帧是差别帧,P 帧没有完整画面数据,只有与前一帧的画面差别的数据。 若 P 帧丢失了,则视频画面会出现花屏、马赛克等现象。...值得注意的是,由于 B 帧图像采用了未来帧作为参考,因此 MPEG-2 编码码流中图像帧的传输顺序和显示顺序是不同的。...DTS 和 PTS DTS(Decoding Time Stamp):即解码时间戳,这个时间戳的意义在于告诉播放器该在什么时候解码这一帧的数据。
公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \
import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。
Silverlight是基于时间线的,不象Flash是基于帧的,所以在Silverlight中,很少看到有文档专门介绍SL中的帧。...但是我们从动画原理知道,动画只不过是一幅幅静态图片连续播放,利用人眼的视觉暂留形成的,因此任何动画从原理上讲,至少还是有每秒播放多少帧这个概念的。...Silverlight的sdk文档中,有一段话: ... maxFramerate 值可通过 Silverlight 插件对象的 maxframerate 参数进行配置。...maxframerate 参数的默认值为 60。currentFramerate 和 maxFramerate 是报告每秒帧数 (fps) 的值。实际显示的帧速率设置为较低的数字。...可以通过特意设置一个较低的 maxframerate 值(如 2,每秒 2 帧)来阐述 currentFramerate 与 maxFramerate 之间的关系。 ...
数据框的长宽转换对于熟悉R语言的朋友而言,应该不会陌生。使用ggplot2画图时,最常用的数据处理就是长宽转换了。...在pandas中,也提供了数据框的长宽转换功能,有以下几种实现方式 1. stack stack函数的基本用法如下 >>> import pandas as pd >>> import numpy as...0.085568 G3 A 0.041538 B 0.910649 G4 A 0.230912 B 0.500152 dtype: float64 用法很简单,将所有的列标签转换为行标签,将对应的值转换为新的数据框中的某一列...,从而实现了数据框由宽到长的转换。...不同之处,在于转换后的列标签不是以index的形式出现,而是作为数据框中的variable列。
import pandas as pd import numpy as np import names ''' 写在前面的话: 1、series与array类型的不同之处为series有索引,...而另一个没有;series中的数据必须是一维的,而array类型不一定 2、可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性 '''...2、当遇到特别长的series,我们支取出前5条或后5条数据时可以直接使用.head()或.tail() ''' s5 = pd.Series(np.array([1, 5, 9, 7, 6, 4, 52...两者的数据类型不一样,None的类型为,而NaN的类型为; (2)可以使用pd.isnull(),pd.notnull(),或自带...''' # print(s12.isnull()) ''' 烽 False 火 False 雷 True 电 True dtype: bool ''' # 取出series中不为空的值
6.1 选取Series数据 读取大学数据集,使用校名作为索行引: >>> import pandas as pd >>> import numpy as np >>> college = pd.read_csv...,返回的是Series: >>> city[...State University" ... ] Series([], Name: CITY, dtype: object) ---- 6.2 选取DataFrame行 这一节和上节有点像,还是先读取数据...Mesa AZ ... 35200 8000 [3 rows x 26 columns] .loc的切片是包含起始和结束的索引的:...先读取数据: >>> college = pd.read_csv( ...
对于dataframe格式的数据: 1、data.value_counts():统计数据出现的次数 2、data.query("label==0"):按指定条件查询数据 3、data.plot():可视化...dataframe格式的数据 4、pandas.get_dummies(data):将某列数据用one-hot编码表示 5、pandas.concat([data1,data2],axis):将data1...的维度上进行拼接 6、data.fillna(0):将缺失数据用0填充 7、data.isna():查询缺失值的那些数据,比如pandas.isna(dfdata['Age']).astype('int32...')将名为'Age'那列的数据的缺失值用1表示 陆续更新,遇到了就记一笔,慢慢积累
在网络通信的世界中,TCP/IP模型以其高效和可靠性而著称。这个模型是现代互联网通信的基石,它定义了数据在网络中如何被传输和接收。其中,一个核心的概念是数据单元的层级,特别是“帧”在这个模型中的位置。...在这一层中,数据被封装成帧,然后通过物理媒介,如有线或无线方式,传输到另一端的设备。那么,帧是什么呢?帧可以被看作是网络数据传输的基本单位。...在网络接口层,帧的处理涉及到各种协议和标准。例如,以太网协议定义了在局域网中帧的结构和传输方式。这些协议确保了不同厂商生产的网络设备可以相互协作,数据可以在各种网络环境中顺利传输。...但是,对帧在TCP/IP模型中的作用有基本的理解,可以帮助开发者更好地理解数据包是如何在网络中传输的,以及可能出现的各种网络问题。...客户端则连接到这个服务器,并接收来自服务器的消息。虽然这个例子中的数据交换看似简单,但在底层,TCP/IP模型中的网络接口层正通过帧来传输这些数据。
mpeg4的每一帧开头是固定的:00 00 01 b6,那么我们如何判断当前帧属于什么帧呢?在接下来的2bit,将会告诉我们答案。...注意:是2bit,不是byte,下面是各类型帧与2bit的对应关系: 00: I Frame 01: P Frame 10: B Frame 为了更好地说明,我们举几个例子,以下是16...进制显示的视频编码: 00 00 01 b6 10 34 78 97 09 87 06 57 87 …… I帧 00 00 01 b6...98 …… B帧 下面我们来分析一下为什么他们分别是I、P、B帧 0x10 = 0001 0000 0x50 = 0101 0000... 0x96 = 1001 0100 大家看红色的2bit,再对照开头说的帧与2bit的对应关系,是不是符合了呢?
大家好,又见面了,我是你们的朋友全栈君。 事先声明,本文档所有内容均在本人的学习和理解上整理,不具有权威性,甚至不具有准确性,本人也会在以后的学习中对不合理之处进行修改。...在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。
(3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...,因为远程帧比数据帧少了数据场; 正常模式下:通过CANTest软件手动发送一组数据,STM32端通过J-Link RTT调试软件也可以打印出CAN接收到的数据; 附上正常模式下,发送数据帧的显示效果...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...远程帧就像命令,命令相应的节点返回一个数据包....发送的数据就是数据帧! 主要用来请求某个指定节点发送数据,而且避免总线冲突。
在数据分析中,常常有这样的场景,需要对不同类别的数据,分别进行处理,然后再将处理之后的内容合并,作为结果输出。对于这样的场景,就需要借助灵活的groupby功能来处理。...上述例子在python中的实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...中的groupby实际上非常的灵活且强大,具体的操作技巧有以下几种 1....汇总数据 transform方法返回一个和输入的原始数据相同尺寸的数据框,常用于在原始数据框的基础上增加新的一列分组统计数据,用法如下 >>> df = pd.DataFrame({'x':['a','...中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。
> x[,2] [1] 6 7 8 9 10 > x[,"v2"] [1] 6 7 8 9 10 > x[( x$v1= 8),] #找出第1列小于4并且第2列大于等于8的元素...v1 v2 v3 3 3 8 13 > x[x$v1>2,] #第1列大于2的所有元素 v1 v2 v3 3 3 8 13 4 4 9 NA 5 5 10 15 > x[which(x$v1...>2),] #使用which函数筛选第1列大于2的所有元素 v1 v2 v3 3 3 8 13 4 4 9 NA 5 5 10 15 > ?...$v1>2) [1] 3 4 5 > x$v1>2 [1] FALSE FALSE TRUE TRUE TRUE > subset(x,x$v1>2) #和上面的操作一样,筛选第1列大于2的所有元素
本文来自IBC 2019(International Broadcasting Convention)中的演讲,主要内容是FFmepg编码的子帧延时。...演讲内容来自EBU(European Broadcasting Union)的Kieran Kunhya。 Kieran Kunhya首先比较了基于整帧图像的编码和子帧编码之间的延时。...基于整帧图像的编码需要在接收到整帧图像后才开始编码,这样在编码阶段会引入至少一帧的延时,同样在解码阶段也会引入一帧的延时。...而子帧编码却不需要在接收完整幅帧图像就可以开始,它将一帧图像的连续N行看作为一个子帧(通常是连续16行或者32行),也称为一个切片(slice),在接收完一个切片后就可以开始编码,这样编解码阶段只会各自引入一个切片的延时...,一个切片的延时大约为40us,所以子帧编码会大大降低编解码过程引入的延时。
文章目录 一、音频帧概念 二、AudioStreamCallback 中的音频数据帧说明 Oboe GitHub 主页 : GitHub/Oboe ① 简单使用 : Getting Started...; 在 【Android 高性能音频】Oboe 开发流程 ( Oboe 完整代码示例 ) 中展示了一个 完整的 Oboe 播放器案例 ; 一、音频帧概念 ---- 帧 代表一个 声音单元 , 该单元中的...类型 ; 上述 1 个音频帧的字节大小是 2\times 2 = 4 字节 ; 二、AudioStreamCallback 中的音频数据帧说明 ---- 在 Oboe 播放器回调类 oboe::...AudioStreamCallback 中 , 实现的 onAudioReady 方法 , 其中的 int32_t numFrames 就是本次需要采样的帧数 , 注意单位是音频帧 , 这里的音频帧就是上面所说的...numFrames 乘以 8 字节的音频采样 ; 在 onAudioReady 方法中 , 需要 采集 8 \times numFrames 字节 的音频数据样本 , 并将数据拷贝到 void
领取专属 10元无门槛券
手把手带您无忧上云