作者:闫钟峰,Datawhale优秀学习者 寄语:本文介绍了创建多级索引、多层索引切片、多层索引中的slice对象、索引层的交换等内容。 创建多级索引 1....指定df中的列创建(set_index方法) 传入两个以上的列名时,必须以list的形式传入(tuple不行)。...第二类特殊情况:由列表构成元组 选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行。...df_using_mul.sort_index().loc[(['C_2','C_3'], ['street_1','street_4','street_7']),:] 多层索引中的slice对象 行索引和列索引均有两个层级...pd.IndexSlice[df_s.sum()>4] 分解开来看--行的筛选,注意观察发现,最终结果没有第一次行索引为A的, 但下边的结果中第一层索引为A的有等于True的--这是因为前边还有个slice
作者:Peter 编辑:Peter 大家好,我是Peter~ 今天给大家一片关于Pandas的基本文章:9种你必须掌握的Pandas索引。...索引在我们的日常生活中其实是很常见的,就像: 一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可; 也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号,很快就能够找到我们想要的书籍...在Pandas中创建合适的索引则能够方便我们的数据处理工作。 [e6c9d24ely1h0dalinfwhj20lu08e3yq.jpg] <!...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: [e6c9d24ely1h0gmuv2wmmj20x60detah.jpg] pandas.Index...0 pd.Int64Index 指定数据类型是int64整型 pandas.Int64Index( data=None, # 生成索引的数据 dtype=None, # 索引类型,默认是int64
---- 0.序言 本文主要以基于AWS 搭建的EMR spark 托管集群,使用pandas pyspark 对合作单位的业务数据进行ETL ---- EXTRACT(抽取)、TRANSFORM(转换...中的E----EXTRACT(抽取),接入过程中面临多种数据源,不同格式,不同平台,数据吞吐量,网络带宽等多种挑战。...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。...和pandas 都提供了类似sql 中的groupby 以及distinct 等操作的api,使用起来也大同小异,下面是对一些样本数据按照姓名,性别进行聚合操作的代码实例 pyspark sdf.groupBy
---- 0.序言 本文主要以基于AWS 搭建的EMR spark 托管集群,使用pandas pyspark 对合作单位的业务数据进行ETL —- EXTRACT(抽取)、TRANSFORM(转换)...ETL 中的E—-EXTRACT(抽取),接入过程中面临多种数据源,不同格式,不同平台,数据吞吐量,网络带宽等多种挑战。...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。...和pandas 都提供了类似sql 中的groupby 以及distinct 等操作的api,使用起来也大同小异,下面是对一些样本数据按照姓名,性别进行聚合操作的代码实例 sdf.groupBy("SEX
文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的 对象...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 1....,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充
参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏 责编 | 刘静 据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: 场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下: 只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。 ...作者:周志鹏,2年数据分析,深切感受到数据分析的有趣和学习过程中缺少案例的无奈,遂新开公众号「数据不吹牛」,定期更新数据分析相关技巧和有趣案例(含实战数据集),欢迎大家关注交流。
今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...行索引其实对应于Series当中的Index,也就是对应Series中的索引。所以我们一般把行索引称为Index,而把列索引称为columns。...不仅如此,loc方法也是支持切片的,也就是说虽然我们传进的是一个字符串,但是它在原数据当中是对应了一个位置的。我们使用切片,pandas会自动替我们完成索引对应位置的映射。 ?...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。
叶老师的GreatSQL社区的这篇文章《3.联合索引、覆盖索引及最左匹配原则|MySQL索引学习》,不仅适用于GreatSQL、MySQL,从原理层,对Oracle等数据库同样是通用的。...在数据检索的过程中,经常会有多个列的匹配需求,接下来给出一些联合索引的使用以及最左匹配原则的案例。...最左匹配原则作用在联合索引中,假如表中有一个联合索引(tcol01, tcol02, tcol03),只有当SQL使用到tcol01、tcol02索引的前提下,tcol03的索引才会被使用,同理只有tcol01...联合索引数据存储方式 先对索引中第一列的数据进行排序,而后在满足第一列数据排序的前提下,再对第二列数据进行排序,以此类推。如下图, 3....那么就可以使用到覆盖索引的功能,查询数据无需回表,减少随机IO。 (3) 效率高。 多列条件的查询下,索引列越多,通过索引筛选出的数据就越少。
公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \
中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。
据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: ?...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下: ? 只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。...只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。
在功能方面,现代PySpark在典型的ETL和数据处理方面具有与Pandas相同的功能,例如groupby、聚合等等。...这还将确定UDF检索一个Pandas Series作为输入,并需要返回一个相同长度的Series。它基本上与Pandas数据帧的transform方法相同。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...,但针对的是Pandas数据帧。
pytorch中的数据索引 在PyTorch中,数据索引是指在处理张量(Tensor)时访问或操作特定元素的过程。...索引在数据处理和深度学习中是非常常见且重要的操作,它允许我们以各种方式访问数据集中的元素,执行数据的切片、提取、过滤等操作。...基本索引方法 在PyTorch中,数据索引的基本方法类似于Python中的列表索引。可以通过使用方括号和索引号来访问张量中的特定元素或子集。...布尔索引 使用布尔索引可以根据条件获取张量中满足条件的元素。...在训练神经网络时,经常需要对数据进行批处理,数据索引操作可以帮助我们有效地实现批处理操作。 实现了一个基于LeNet架构的简单神经网络对MNIST数据集进行训练和测试的过程。
本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。...现在的数据看起来像我们想要的那样。
我喜欢 Pandas — 我还为它做了一个名为“为什么 Pandas 是新时代的 Excel”的播客。 我仍然认为 Pandas 是数据科学家武器库中的一个很棒的库。...Spark 学起来更难,但有了最新的 API,你可以使用数据帧来处理大数据,它们和 Pandas 数据帧用起来一样简单。 此外,直到最近,Spark 对可视化的支持都不怎么样。...作为 Spark 贡献者的 Andrew Ray 的这次演讲应该可以回答你的一些问题。 它们的主要相似之处有: Spark 数据帧与 Pandas 数据帧非常像。...与 Pandas 相比,PySpark 稍微难一些,并且有一点学习曲线——但用起来的感觉也差不多。 它们的主要区别是: Spark 允许你查询数据帧——我觉得这真的很棒。...有时,在 SQL 中编写某些逻辑比在 Pandas/PySpark 中记住确切的 API 更容易,并且你可以交替使用两种办法。 Spark 数据帧是不可变的。不允许切片、覆盖数据等。
集成X-Pack高级特性,适用日志分析/企业搜索/BI分析等场景 ---- 在实际的使用中,数据并不总是干净的。...根据产生方式的不同,数字可能会在 JSON 主体中呈现为真实的 JSON 数字,例如 5,但也可能呈现为字符串,例如 “5”。...或者,应将应为整数的数字呈现为浮点数,例如 5.0,甚至是 “5.0”。 coerce 尝试清除不匹配的数值以适配字段的数据类型。...针对第二字段 number_two,它同样被定义为证型值,但是它同时也设置 coerce 为 false,也就是说当字段的值不匹配的时候,就会出现错误。...由于禁用了强制,因此该文档将被拒绝 Index 级默认设置 可以在索引级别上设置 index.mapping.coerce 设置,以在所有映射类型中全局禁用强制: PUT my_index{ "settings
首先,导入 NumPy 库和 Pandas 库。...import numpy as np import pandas as pd 一、元组作为一级索引 如果想产生如下图所示的学生成绩表: 因为 DataFrame 的行索引/列索引要求是不可变的,因此考虑使用元组做索引是很自然的选择...二、引入多级索引 (一)多级索引的创建 MultiIndex 对象是 Pandas 标准 Index 的子类,由它来表示多层索引业务。...小结:无论基于行索引还是列索引选取数据,只要没指定最高级索引,则必须使用.loc[行索引,列索引]的形式。 2、基于行索引选取数据 基于行索引选取数据,必须使用.loc[]的形式。...# 基于行的单个第1层索引值选取数据 scores.loc[2017] # 基于行的多个第1层索引值选取数据 scores.loc[[2017,2016]] # 基于行的单个第2层索引值选取数据 scores.loc
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战 通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示 AUTUMN...导入数据 我们先导入数据与pandas模块,源数据获取,公众号后台回复【多重索引】就能拿到 import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv...') df.head() output 该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?...()方法,代码如下 df.reset_index() 下面我们就开始针对多层索引来对数据集进行一些分析的实战吧 第一层级的数据筛选 在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法...对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下 df.xs('2019-07-04', level='Date
数据框的长宽转换对于熟悉R语言的朋友而言,应该不会陌生。使用ggplot2画图时,最常用的数据处理就是长宽转换了。...在pandas中,也提供了数据框的长宽转换功能,有以下几种实现方式 1. stack stack函数的基本用法如下 >>> import pandas as pd >>> import numpy as...0.085568 G3 A 0.041538 B 0.910649 G4 A 0.230912 B 0.500152 dtype: float64 用法很简单,将所有的列标签转换为行标签,将对应的值转换为新的数据框中的某一列...,从而实现了数据框由宽到长的转换。...不同之处,在于转换后的列标签不是以index的形式出现,而是作为数据框中的variable列。
领取专属 10元无门槛券
手把手带您无忧上云