首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

怎么将多行多列的数据变成一列?4个解法。

- 问题 - 怎么将这个多行多列的数据 变成一列?...- 1 - 不需保持原排序 选中所有列 逆透视,一步搞定 - 2 - 保持原排序:操作法一 思路直接,为保排序,操作麻烦 2.1 添加索引列 2.2 替换null值,避免逆透视时行丢失,后续无法排序...2.3 逆透视其他列 2.4 再添加索引列 2.5 对索引列取模(取模时输入参数为源表的列数,如3) 2.6 修改公式中的取模参数,使能适应增加列数的动态变化 2.7 再排序并删列 2.8...筛选掉原替换null的行 - 3 - 保持排序:操作法二 先转置,行标丢失,新列名可排序 有时候,换个思路,问题简单很多 3.1 转置 3.2 添加索引列 3.3 逆透视 3.4 删列 -...4 - 公式一步法 用Table.ToColumns把表分成列 用List.Combine将多列追加成一列 用List.Select去除其中的null值

3.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    个人永久性免费-Excel催化剂功能第100波-透视多行数据为多列数据结构

    模拟的有重复的数据源 在PowerQuery上出现数据错误和丢失情况 更为合理的操作是将重复的项目给拼接起来,假如数据源合理下 功能实现 经过封装后的功能,肯定较原生的功能要好用,易用,就算对标PowerQuery...功能入口 操作步骤 步骤一:选择数据源 这在大量Excel催化剂的功能中,都是以这一步为起点。先组织好自己的数据源,保证没有断行断列的标准数据源,不需要的行列,隐藏处理下。...配置窗体设置 步骤三:返回数据结构,按提示操作 同样使用Excel催化剂一贯的数据导出模板,在过往教程中大量使用。...大量的功能都集中在数据采集、数据清理、数据处理等基础的工作上,也在这些环节中,将无数地存有共性问题的需求,提炼出来,形成一个个众人都能掌握的,低门槛,易操作,少繁琐的功能。...或者被面试者可以很自豪地说,我熟练使用Excel催化剂,我站在巨人的肩膀上,借由它对数据类工作非常能胜任。

    90620

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...data['count'].agg(['min','max','median']) 聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year'...reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字:

    5.8K31

    Python中的数据处理利器

    # 转化为元组print(dict(df['title'])) # 转化为字典,key为数字索引 # 2.读取某一个单元格数据# 不包括表头,指定列名和行索引print(df['title'][0...指定行索引和列索引(或者列名)print(df.iloc[0]["l_data"]) # 指定行索引和列名print(df.iloc[0][2]) # 指定行索引和列索引 # 3.读取多行数据...sheet_name='multiply') # 返回一个DataFrame对象,多维数据结构print(df) # 1.iloc方法# iloc使用数字索引来读取行和列# 也可以使用iloc方法读取某一列...print(df.iloc[:, 0])print(df.iloc[:, 1])print(df.iloc[:, -1]) # 读取多列print(df.iloc[:, 0:3]) # 读取多行多列print...print(df.loc[1:2, "title":"r_data"]) # 多列多行 # 基于布尔类型来选择print(df["r_data"] > 5) # 某一列中大于5的数值为True,

    2.3K20

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']}) ?...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5K10

    左手用R右手Python系列5——数据切片与索引

    只懂一些皮毛,感性的话,可以自行扩展学习,以上切片与索引方式最足够你完成数据分析工作中的所有切片索引需求。...位置与标签混合索引(ix函数): #使用ix按索引标签和位置混合提取数据 df_inner.ix[:,:] 指定规则就是可以同时在行列参数指定位置灵活的提供位置参数和标签参数(因本例使用的默认的数字索引字段...好吧,讲了这么多,终于可以开始总结一下R语言与Python的切片索引规则重要的区别了: R语言中生成数据框使用的圆括号,Python中则根据不同数据类型分别定义(列表用方括号、元组用圆括号、字典和几何用花括号...) R语言和Python索引都用方括号,且都是使用逗号进行行规则和列规则的位置间隔 R语言与Python在索引多行多列时传入数据类型不同,R语言传入向量,Python传入列表。...在索引多行时,R与Python都可以使用连续行列,均需提供占位符号,(R语言留白即可标识全选,Python则占位则必须提供“:”符号),在索引多列时,均无需提供占位符号。(当然提供了也不多余)。

    3K50

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    ● 多列数据   apply()最特别的地方在于其可以同时处理多列数据,譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中...3.1 利用groupby()进行分组   要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果,主要可以进行以下几种操作: ●...● 聚合数据框   对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']})...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5.1K60

    pandas(ix & iloc &loc)区别

    loc——通过行标签索引行数据 iloc——通过行号索引行数据 ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合) 举例说明: 1、分别使用loc、iloc、ix 索引第一行的数据...loc、iloc、ix 索引第一列的数据: '''分别使用loc、iloc、ix 索引第一列的数据''' import pandas as pd data=[[1,2,3],[4,5,6]] index...loc、iloc、ix 索引多行的数据: '''分别使用loc、iloc、ix 索引多行的数据''' import pandas as pd data=[[1,2,3],[4,5,6]] index=[...'a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print...loc、iloc、ix 索引多列的数据: '''分别使用loc、iloc、ix 索引多列的数据''' import pandas as pd data=[[1,2,3],[4,5,6]] index=[

    84240

    使用pandas进行数据快捷加载

    导读:在已经准备好工具箱的情况下,我们来学习怎样使用pandas对数据进行加载、操作、预处理与打磨。 让我们先从CSV文件和pandas开始。...以下是X数据集的后4行数据: ? 在这个例子中,得到的结果是一个pandas数据框。为什么使用相同的函数却有如此大的差异呢?...那么,在前一个例子中,我们想要抽取一列,因此,结果是一维向量(即pandas series)。 在第二个例子中,我们要抽取多列,于是得到了类似矩阵的结果(我们知道矩阵可以映射为pandas的数据框)。...然后,接下来的步骤需要弄清楚要处理的问题的规模,因此,你需要知道数据集的大小。通常,对每个观测计为一行,对每一个特征计为一列。...为了获得数据集的维数,只需在pandas数据框和series上使用属性shape,如下面的例子所示: print (X.shape) #输出:(150,2) print (y.shape) #输出:(150

    2.1K21

    Python入门之数据处理——12种有用的Pandas技巧

    注:第二个输出中使用了head()函数,因为结果中包含很多行。 # 3–填补缺失值 ‘fillna()’可以一次性解决:以整列的平均数或众数或中位数来替换缺失值。...这可以使用到目前为止学习到的各种技巧来解决。 #只在有缺失贷款值的行中进行迭代并再次检查确认 ? ? 注意: 1. 多索引需要在loc中声明的定义分组的索引元组。这个元组会在函数中用到。...现在,我们可以将原始数据帧和这些信息合并: ? ? 透视表验证了成功的合并操作。请注意,“value”在这里是无关紧要的,因为在这里我们只简单计数。...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...◆ ◆ ◆ 结语 本文中,我们涉及了Pandas的不同函数,那是一些能让我们在探索数据和功能设计上更轻松的函数。同时,我们定义了一些通用函数,可以重复使用以在不同的数据集上达到类似的目的。

    5K50

    python-Python与SQLite数据库-使用Python执行SQLite查询(二)

    我们使用占位符?表示要传递一个变量的值。在执行查询时,我们将实际值作为元组的第二个参数传递给execute()方法,这里使用了(age_threshold,)这种写法来表示只有一个元素的元组。...最后,我们使用一个循环遍历所有行,并打印它们的值。使用fetchall()获取列名和列类型当我们查询数据库时,通常需要知道每列的名称和数据类型。...我们使用一个列表推导式来提取列名和列类型,并使用print()函数打印它们的值。使用fetchall()和pandas库获取数据框pandas是一个强大的数据分析库,可以用于处理和分析数据。...在Python中,我们可以使用pandas库将查询结果转换为数据框,并使用数据框来处理数据。...pandas库还提供了许多用于处理和分析数据的函数和工具,例如数据清洗、数据分组、数据可视化等等。如果你需要处理大量数据,使用pandas库将会是一个不错的选择。

    1.5K10

    python单细胞学习笔记-day4

    ):去重并统计每个取值的次数 pandas:为series提供相应方法 .tolist():series向list转换 list():array 向 list转换 也可以使用集合,集合自动去重 2.矩阵...: 2.3 矩阵和数据转换 矩阵转为数据框,可以加上行名和列名 数据框转为矩阵,有三种方法。...(df2) 3.2 数据框提取列 提取一列:点号或者[],如果列名有空格,不能使用点号 print(df1.gene) print(df1['gene']) type(df1.gene) # 返回series...df1.gene.tolist() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置...# 读取第一行, 不写逗号默认读取行 # 以下方式返回的都是series print(df1.iloc[0]) print(df1.iloc[0,]) print(df1.iloc[0,:]) 提取多行多列

    5300

    一道基础题,多种解题思路,引出Pandas多个知识点

    小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 源于林胖发出的一道基础题: ? ?...这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。...不过这样会丢失原本的"a"列,我们可以先将"a"列设置为索引,再进行Series分列操作: df.set_index("a")["b"].apply(pd.Series) 或者把结果设置成原本的"a"

    1.2K20

    Pandas知识点-连接操作concat

    结果的行索引是多个数据的行索引拼接的结果,如果有相等的行索引会重复多行。 2. 按列连接 ?...axis: axis参数默认为0('index'),如果将axis参数设置为1('columns'),则表示按列连接,结果的列数为被连接数据的列数之和。...结果的列索引是多个数据的列索引拼接的结果,如果有相等的列索引会重复多列。 二连接基本原理解析 ---- 上面两个例子的连接原理如下。 1. 按行连接 ? 2. 按列连接 ?...根据上面的三个例子(例1~例3),可以总结连接的原理为(按行连接,按列同理): 第一步,将数据按行拼接起来,如果有行索引相等的行,行索引会重复多行。...也可以添加多层,如果添加多层行索引则用元组的方式传入。 前面提到concat()的第一个参数可以用字典的方式传入,其效果与使用keys参数相同。

    2.6K50

    Pandas库的基础使用系列---数据查看

    可以看到它返回的是一个元组,元组的第一个元素代表的就是行数,第二个参数就是列数。...最新版本以及不支持了,这里就不介绍了)loc我们注意到,我们的excel表中并没有0~10的那列索引,这一列时pandas自动帮我们生成的,如果我们还想使用之前的指标那列作为索引该如何操作呢?...接下来我们就可以使用loc这个方法来获取指定行的数据了,例如我们获取县数(个)这行的数据df.loc["县数(个)"]可以看到,我们可以正常的获取到,如果要同时获取多行,只需修改列表中的参数即可这里需要注意的是我们使用的的是一个列表作为参数传给了...多行和上面的用法类似df.iloc[[2, 5]]获取指定列的数据我们可以通过列名来获取数据df["2021年"]获取多列和获取行的形式类似df[["2021年","2014年"]]结尾好了,今天的内容就是这些...,下期我们继续分享如果通过行和列一起获取指定单元格的数据。

    32900
    领券