首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的loc和iloc_pandas获取指定数据的行和列

大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

10K21

Pandas中级教程——数据合并与连接

Python Pandas 中级教程:数据合并与连接 Pandas 是一款强大的数据处理库,提供了丰富的功能来处理和分析数据。在实际数据分析中,我们常常需要将不同数据源的信息整合在一起。...本篇博客将深入介绍 Pandas 中的数据合并与连接技术,帮助你更好地处理多个数据集的情况。 1. 安装 Pandas 确保你已经安装了 Pandas。...数据合并 4.1 使用 merge 函数 merge 函数是 Pandas 中用于合并数据的强大工具,它类似于 SQL 中的 JOIN 操作。...多键合并 如果连接键不止一个,可以传递一个由多个列名组成的列表。 # 多键合并 merged_df = pd.merge(df1, df2, on=['key1', 'key2']) 8....总结 通过学习以上 Pandas 中的合并与连接技术,你可以更好地处理多个数据集之间的关系,提高数据整合的效率。在实际项目中,理解这些技术并熟练运用它们是数据分析的重要一环。

19710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据导入与预处理-第6章-01数据集成

    数据集成之后可能需要经过数据清理,以便清除可能存在的实体识别、冗余属性识别和元组重复问题。pandas中有关数据集成的操作是合并数据,并为该操作提供了丰富的函数或方法。...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...how参数的取值‘inner’代表基于left与right的共有的键合并,类似于数据库的内连接操作;'left’代表基于left的键合并,类似于数据库的左外连接操作;'right’代表基于right的键合并...result = pd.merge(df_left, df_right, on='key') result 输出为: 左外连接的方式合并数据 # 以key为主键,采用左外连接的方式合并数据...lsuffix: 左DataFrame中重复列的后缀 rsuffix: 右DataFrame中重复列的后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df

    2.6K20

    数据城堡参赛代码实战篇(四)---使用pandas合并数据表

    在上一篇文章中,小编主要介绍了pandas中使用drop_duplicates()方法去除重复数据。本篇,小编文文将带你探讨pandas在数据合并的应用。...2.2 关于连接方式 细心的读者可能已经发现了,在我们合并df1和df2的时候,我们没有指定按照何种方式连接,结果中没有key值为‘c’或者‘d’的数据,这是因为pandas的merge()方法默认使用的是内连接...(inner),结果中的键是交集,即只有key值为‘a'和’b'的列,因此上述合并df1和df2的代码和下面的代码等同: pd.merge(df1,df2,how='inner') 另一个需要注意的地方是...,pandas对相同的键做笛卡尔积运算。...例如df1中key值为’a'的有3行,df2种key值为‘a’的有1行,那么合并结果中key值为‘a’的有3*1=3行。

    1.8K60

    数据导入与预处理-课程总结-04~06章

    * na_df.fillna("*") 2.3 重复值处理 2.3.1 重复值的检测 pandas中使用duplicated()方法来检测数据中的重复值。...对象中的重复值 df.duplicated() # 返回boolean数组 # 查找重复值 # 将全部重复值所在的行筛选出来 df[df.duplicated()] # 查找重复值|指定 # 上面是所有列完全重复的情况...常用的合并数据的函数包括: 3.2.3 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...how参数的取值‘inner’代表基于left与right的共有的键合并,类似于数据库的内连接操作;'left’代表基于left的键合并,类似于数据库的左外连接操作;'right’代表基于right的键合并...lsuffix: 左DataFrame中重复列的后缀 rsuffix: 右DataFrame中重复列的后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df

    13.1K10

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。

    19.2K60

    Python之数据规整化:清理、转换、合并、重塑

    Python之数据规整化:清理、转换、合并、重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来。...pandas.concat可以沿着一条轴将多个对象堆叠到一起。 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。 2....数据风格的DataFrame合并操作 2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的。如果没有指定,merge就会将重叠列的列名当做键,最好显示指定一下。...pd.merge(df1,df2,on='key') 2.2 默认情况下,merge做的是"inner"连接,结果中的键是交集。其他方式有“left”、“right”、“outer”。...外连接求取的是键的并集,组合了左连接和右连接。 2.3 都对的的连接是行的笛卡尔积。 2.4 merge的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串。

    3.1K60

    直观地解释和可视化每个复杂的DataFrame操作

    初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...合并不是pandas的功能,而是附加到DataFrame。始终假定合并所在的DataFrame是“左表”,在函数中作为参数调用的DataFrame是“右表”,并带有相应的键。...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...另一方面,如果一个键在同一DataFrame中列出两次,则在合并表中将列出同一键的每个值组合。...how参数是一个字符串,它表示四种连接 方法之一, 可以合并两个DataFrame: ' left ':包括df1的所有元素, 仅当其键为df1的键时才 包含df2的元素 。

    13.3K20

    数据合并与数据关联:数据处理中的核心操作

    在Python的Pandas库中,可以使用pd.concat()函数实现纵向合并:import pandas as pddf1 = pd.DataFrame({'A': [1, 2], 'B': [3,...在Pandas中,可以使用pd.merge()函数实现横向合并:df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})df2 = pd.DataFrame...)print(result)数据合并的类型在横向合并中,根据合并方式的不同,可以分为以下几种类型:内连接(Inner Join):仅保留两个数据集中连接键(即用于匹配的字段)都存在匹配的行。...换言之,只显示两个表中都有对应记录的行。左连接(Left Join):保留左表的所有行,即使右表中没有匹配的行。对于左表中没有对应匹配的行,右表的部分将会填充为NULL(通常用NaN表示)。...右连接(Right Join):与左连接相反,保留右表的所有行。对于右表中没有对应匹配的行,左表的部分将会填充为NULL。全外连接(Full Outer Join):保留两个表中的所有行。

    10521

    数据清洗、合并、转化和重构

    文章来源:Python数据分析 目录: DIKW模型与数据工程 科学计算工具Numpy 数据分析工具Pandas Pandas的函数应用、层级索引、统计计算 Pandas分组与聚合 数据清洗、合并、...的行连接起来 类似数据库的连接操作 示例代码: import pandas as pd import numpy as np df_obj1 = pd.DataFrame({'key': ['b',...“外连接”(outer),结果中的键是并集 示例代码: # “外连接” print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on='key2',...,默认为outer Series合并时查看行索引有无重复 1) index 没有重复的情况 示例代码: # index 没有重复的情况 ser_obj1 = pd.Series(np.random.randint...0 1 2 0 0 5 8 1 3 1 7 2 7 9 9 3) DataFrame合并时同时查看行索引和列索引有无重复 示例代码: df_obj1 = pd.DataFrame

    1.5K50

    Pandas全景透视:解锁数据科学的黄金钥匙

    , 4, 5], 'B': [5, 4, 3, 2, 1]})# 查找列'A'中大于3的所有行,并将结果转换为64位整数result = (df['A'] > 3).astype('int64')...DataFrame或Series,一左一右how:两个数据连接方式,默认为inner,可设置inner、outer、left或righton:作为连接键的字段,左右数据中都必须存在,否则需要用left_on...和right_on来指定left_on:左表的连接键字段right_on:右表的连接键字段left_index:为True时将左表的索引作为连接键,默认为Falseright_index:为True时将右表的索引作为连接键...函数根据 'A' 列合并两个 DataFramemerged_df = pd.merge(df1, df2, on='A')print("合并后的 DataFrame:")print(merged_df...)运行结果合并后的 DataFrame: A B C0 1 4 71 2 5 82 3 6 9在本文中,我们深入探讨了Pandas库中一系列高效的数据处理方法。

    11710

    Pandas数据合并:concat与merge

    一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...本文将深入探讨Pandas中的两种主要合并方法——concat和merge,从基础概念到常见问题,再到报错解决,帮助读者全面掌握这两种方法。...(一)概述merge函数更类似于SQL中的JOIN操作,它根据某些键(通常是共同的列)来合并两个DataFrame。...对于merge,如果用于合并的键不是唯一的,可能会导致意外的结果。确保用于合并的键是唯一标识符,或者根据业务需求明确合并规则。(二)列名冲突问题在合并过程中,很容易遇到列名冲突的情况。...'] = df['score'].astype(int) # 转换为整型五、常见报错及避免方法(一)KeyError当使用merge时,如果指定的用于合并的键不存在于其中一个DataFrame中,就会抛出

    13810

    Python连接大法|“合体”

    01 主办方 本次活动的主办方是Python和Pandas 02 小梦merge 小超呀,你认识sql中的join兄么,我们可是好兄弟(用法非常类似) 03 小超concat 哼,我和数据库中的UNION...对象中,如果位指定,则以left和right列名的交集作为连接键 left_on 以左侧的DataFrame作为连接键 right_on 以右侧的DataFrame作为连接键 left_index 以左侧的行索引作为连接键...right_index 以右侧的行索引作为连接键 sort 根据连接键对合并后的数据进行排序,默认为True suffixes 字符串值元组,用于追加到重叠列名的末尾,默认为('x','y') copy...2 c 2 2.0 3 d 3 NaN 4 e 4 NaN # 左连接,取df1的全部,df2的部分 pd.merge(df1,df2,on='key',how='left') key data data1...levels 序列列表,默认无,用于构造多重索引 names 创建分层级别的名称 verify_integrity bool,默认为False,检查新的连接轴是否包含重复项 一向公正的pandas社长同样也为小超建造了一个场景

    79810

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    2.2 主键合并数据  ​ 主键合并类似于关系型数据库的连接方式,它是指根据个或多个键将不同的 DataFrame对象连接起来,大多数是将两个 DataFrame对象中重叠的列作为合并的键。 ...2.2.1.1 how参数可以取下列值  left:使用左侧的 DataFrame的键,类似SQL的左外连接 right:使用右侧的 DataFrame的键,类似SQL的右外连接 outer:使用两个...inner:使用两个 DataFrame键的交集,类似SQL的内连接  ​ 在使用 merge()函数进行合并时,默认会使用重叠的列索引做为合并键,并采用内连接方式合并数据,即取行索引重叠的部分。  ​...数据重塑  3.1 重塑层次化索引  ​ Pandas中重塑层次化索引的操作主要是 stack()方法和 unstack()方法,前者是将数据的列“旋转”为行,后者是将数据的行“旋转”为列。 ...3.2 轴向旋转  ​ 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。

    5.5K00

    数据清洗、合并、转化和重构

    DataFrame的行连接起来 3、类似数据库的连接操作 示例代码: import pandas as pd import numpy as np df_obj1 = pd.DataFrame({'...how指定连接方式 4、“外连接”(outer),结果中的键是并集 示例代码: # “外连接” print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on...,默认为outer 3、Series合并时查看行索引有无重复 index没有重复的情况 示例代码: # index 没有重复的情况 ser_obj1 = pd.Series(np.random.randint...0 1 2 0 0 5 8 1 3 1 7 2 7 9 9 dataframe合并时同时查看行、列索引有无重复 示例代码: df_obj1 = pd.DataFrame...1 duplicated() 返回布尔型Series表示每行是否为重复行 示例代码: import numpy as np import pandas as pd df_obj = pd.DataFrame

    92650

    合并多个Excel文件,Python相当轻松

    保险ID’) 第一次合并 这里,df_1称为左数据框架,df_2称为右数据框架,将df_2与df_1合并基本上意味着我们将两个数据帧框架的所有数据合并在一起,使用一个公共的唯一键匹配df_2到df_1中的每条记录...注意,在第一个Excel文件中,“保险ID”列包含保险编号,而在第二个Excel文件中,“ID”列包含保险编号,因此我们必须指定,对于左侧数据框架(df_1),希望使用“保险ID”列作为唯一键;而对于右侧的数据框架...df_1和df_2中的记录数相同,因此我们可以进行一对一的匹配,并将两个数据框架合并在一起。...图6:合并数据框架,共21行和8列 第二次合并 我们获取第一次合并操作的结果,然后与另一个df_3合并。...最终数据框架中只有8行,这是因为df_3只有8条记录。默认情况下,merge()执行”内部”合并,使用来自两个数据框架的键的交集,类似于SQL内部联接。

    3.8K20

    【python数据分析】Pandas数据载入

    Pandas 常用的导入格式:import pandas as pd ---- 一、数据载入 1.文本文件读取 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...二、合并数据 在实际的数据分析中,对同一分析对象,可能有不同的数据来源,因此,需要对数据进行合并处理。...1.merge数据合并 · merge·函数是通过一个或多个键将两个DataFrame按行合并起来,Pandas中的数据合并merge( )函数格式如下: merge(left, right, how=...中行索引作为连接键 sort 合并后会对数据排序,默认为True suffixes 修改重复名 1.2. merge的默认合并数据 price = pd.DataFrame( {'fruit':['apple...pandas中的concat方法可以实现,默认情况下会按行的方向堆叠数据。如果在列向上连接设置axies = 1即可。

    36120

    python merge、concat合

    数据规整化:合并、清理、过滤 pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!...right_on 右侧DataFarme中用作连接键的列 left_index 将左侧的行索引用作其连接键 right_index 将右侧的行索引用作其连接键 sort 根据连接键对合并后的数据进行排序...默认总是赋值 1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值) import pandas as pd import numpy as np df1 = pd.DataFrame...,另一个表中的连接键有重复值) df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)}) df1 data1...1)默认情况下,会将两个表中相同列名作为连接键 2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5’,右表有两个值‘2,3’,则会形成,(1,2)(1,3)(3,1),(3,2)。。。

    1.8K10

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...groupby()通常是指一个过程,在该过程中,我们希望将数据集分为几组,应用某些功能(通常是聚合),然后将各组组合在一起。 常见的SQL操作是获取整个数据集中每个组中的记录数。...左/右外联接 在SQL中实现左/右外连接可以使用LEFT OUTER JOIN和RIGHT OUTER JOIN SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1...七、合并 SQL中UNION操作用于合并两个或多个SELECT语句的结果集,UNION与UNION ALL类似,但是UNION将删除重复的行。

    3.6K31
    领券