首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas如何从df1的df2中获取值,而df1和df2在列上的值重叠

在pandas中,可以使用merge()函数将两个DataFrame按照列的值进行合并,并获取重叠的值。

具体步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建两个DataFrame,df1和df2。
  3. 使用merge()函数将df1和df2按照列的值进行合并,并指定合并方式(如inner、outer、left、right)。
    • 例如:merged_df = pd.merge(df1, df2, on='列名', how='合并方式')
  • 获取重叠的值,可以通过筛选合并后的DataFrame中的特定列来实现。
    • 例如:overlap_values = merged_df['列名']

下面是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建示例DataFrame
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [3, 4, 5], 'B': [6, 7, 8]})

# 合并DataFrame并获取重叠的值
merged_df = pd.merge(df1, df2, on='A', how='inner')
overlap_values = merged_df['B']

print(overlap_values)

以上代码中,我们创建了两个示例DataFrame df1和df2,然后使用merge()函数按照列'A'的值进行内连接合并。最后,我们通过merged_df['B']获取了重叠的值。

关于pandas的更多详细信息和用法,可以参考腾讯云的相关产品文档:pandas文档

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

《Python for Excel》读书笔记连载11:使用pandas进行数据分析之组合数据

引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何将数据组合,即concat、join和...在下一章中,我们将使用它从多个CSV文件中生成单个数据框架: pd.concat([df1,df2, df3, …]) 而join和merge只适用于两个数据框架,这是我们下面介绍的内容。...图5-3通过使用两个示例数据框架df1和df2,展示了四种联接类型(即内联接Inner、左联接Left、右联接Right和外联接Outer)如何工作。...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...表5-5.联接类型 让我们看看它们在实践中是如何运作的,将图5-3中的示例付诸实践: 如果要在一个或多个数据框架列上联接而不是依赖索引,那么使用“合并”(merge)而不是“联接”(join)。

2.5K20

小蛇学python(15)pandas之数据合并

在python的pandas中,合并数据共有三种思路。 其一,关系型数据库模式的连接操作。 其二,沿轴将多个操作对象拼接在一起。 其三,对互有重复数据的处理与合并。 我们分别来进行介绍。...image.png 这里,并没有指定要用哪个列进行连接,如果没有指定,就会默认将重叠列的列名当作连接键。这里连接的结果是按照笛卡儿积的逻辑实现的。在这个例子中表现不太明显,我们再看下一个例子。...image.png 有一种很常见的情况,就是表格中的连接键位于索引中。看下面这个例子如何解决。...所谓轴,即是要么横着拼接,要么竖着拼接的意思。 比如想把2017年和2018年吉林大学在安徽省的专业招收人数情况横向拼接起来,就会用到concat。如下例子。...合并重叠数据 还有一种情况,就是用参数对象中的数据为调用者对象的缺失数据打补丁。这里,我们就需要用到combine_first函数。

1.6K20
  • 灰太狼的数据世界(三)

    我们工作中除了手动创建DataFrame,绝大多数数据都是读取文件获得的,例如读取csv文件,excel文件等等,那下面我们来看看pandas如何读取文件呢?...):查看DataFrame对象中每一列的唯一值和计数 print(df.head(2)) print(df[0:2]) ?...在DataFrame中增加一列,我们可以直接给值来增加一列,就和python的字典里面添加元素是一样的: import pandas as pd import numpy as np val = np.arange...首先我们可能需要从给定的数据中提取出一些我们想要的数据,而Pandas 提供了一些选择的方法,这些选择的方法可以把数据切片,也可以把数据切块。...) 我们也可以增加一些限制,在一行中有多少非空值的数据是可以保留下来的(在下面的例子中,行数据中至少要有 5 个非空值) df1.drop(thresh=5) 删除不完整的列(dropna) 我们可以上面的操作应用到列上

    2.8K30

    Python连接大法|“合体”

    01 主办方 本次活动的主办方是Python和Pandas 02 小梦merge 小超呀,你认识sql中的join兄么,我们可是好兄弟(用法非常类似) 03 小超concat 哼,我和数据库中的UNION...对象中,如果位指定,则以left和right列名的交集作为连接键 left_on 以左侧的DataFrame作为连接键 right_on 以右侧的DataFrame作为连接键 left_index 以左侧的行索引作为连接键...right_index 以右侧的行索引作为连接键 sort 根据连接键对合并后的数据进行排序,默认为True suffixes 字符串值元组,用于追加到重叠列名的末尾,默认为('x','y') copy...2 2 # 外连接,取并集,缺失值用NaN填充 pd.merge(df1,df2,on='key',how='outer') key data data1 0 a 0 0.0 1 b 1 1.0...两人你来我往了不知多久,主办方都鼾声四起了 pandas伸个懒腰,小结一下吧: 1.merge默认是内连接,concat默认是外连接 2.concat准确来说是拼接,axis参数决定横纵向拼接,在axis

    79810

    Python 数据分析(三):初识 Pandas

    Pandas 适用于处理以下类型的数据: 有序和无序的时间序列数据 带行列标签的矩阵数据,包括同构或异构型数据 与 SQL 或 Excel 表类似的,含异构列的表格数据 任意其它形式的观测、统计数据集,...print(s1.values) # 获取索引和值 print(s1.iteritems) # 取指定值 print(s2[0]) print(s2['6']) # 连续取值 print(s2[1:3...0]) # 取某一个值 print(df.iloc[0, 1]) 3.3 添加删除 我们通过示例来看一下如何向 DataFrame 中添加数据以及如何从其中删除数据。...from pandas import DataFrame import pandas as pd import numpy as np df1 = DataFrame([['张三', '22'], [...001', '002', '003']) print(df1) # 在某位置插入一行 row = ['004', '赵六', '66', '男'] df1.iloc[2] = row print(df1

    1.6K20

    数据规整(2)

    语句如下: pd.merge(df1, df2, on = 'key') 如果对象的列名是不同的,比如df1的联合列名字key改为key1,df2的联合列名字key改为key2,此时语句应为: pd.merge...例如下面语句: pd.merge(df1, df2, left_on = 'key', right_index = True, how = 'outer') 表示数据合并是依据df1的key列和df2...如果数据是多层索引,例如df1的索引列是key1和key2,则语句应该变为: pd.merge(df1, df2, left_on = ['key1', 'key2'], right_index =...True, how = 'outer') (3)联合重叠数据 另外的一个数据联合场景,既不是合并操作,也不是连接操作。...s1中的a的缺失值被b的0所代替。同样的,DataFrame也有combine_first方法。 本章的数据规整到此结束,目前已经了解了pandas的基础知识,包括数据导入、清洗和重新规整。

    80810

    Pandas merge用法解析(用Excel的数据为例子)

    必须在左侧和右侧DataFrame对象中找到。如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。...比如left:[‘A’,‘B’,‘C’];right[’'A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到...suffixes: 用于重叠列的字符串后缀元组。默认为(‘x’,’ y’)。 copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。..._merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键...】丢失了 vlookup_data=pd.merge(df1,df2,how='right') 这个就可以自己解理了 ======================= Pandas比excel的vlookup

    1.7K20

    Python科学计算:Pandas

    在NumPy中数据结构是围绕ndarray展开的,那么在Pandas中的核心数据结构是什么呢?...数据导入和输出 Pandas允许直接从xlsx,csv等文件中导入数据,也可以输出到xlsx, csv等文件,非常方便。...数据量大的情况下,有些字段存在空值NaN的可能,这时就需要使用Pandas中的isnull函数进行查找。...总结 和NumPy一样,Pandas有两个非常重要的数据结构:Series和DataFrame。使用Pandas可以直接从csv或xlsx等文件中导入数据,以及最终输出到excel表中。...我重点介绍了数据清洗中的操作,当然Pandas中同样提供了多种数据统计的函数。 最后我们介绍了如何将数据表进行合并,以及在Pandas中使用SQL对数据表更方便地进行操作。

    2K10

    Pandas知识点-算术运算函数

    () df1.pow(df2) 计算df1的df2次方,df1^df2 rpow() df1.rpow(df2) 计算df2的df1次方,df2^df1 在Pandas中,这些函数的用法和运算规则都相同...两个DataFrame相加,如果DataFrame的形状和索引不完全一样,只会将两个DataFrame中行索引和列索引对应的数据相加,生成一个形状能兼容两个DataFrame的新DataFrame,在没有运算结果的位置填充空值...fillna(value): 运算出结果后,将所有空值的位置都填充成指定值。 在算术运算函数中,可以使用fill_value参数,在运算前先填充数据。 ?...两个Series相加,如果形状和索引不完全一样,只会将行索引对应的数据相加,生成一个形状能兼容两个Series的新Series,在没有运算结果的位置填充空值(NaN)。 ?...在Series与DataFrame进行算术运算时,默认会将Series看成是一行数据(而不是一列),在add()函数中,axis参数默认为1或'columns'。

    2.2K40

    【数据处理包Pandas】DataFrame对象的合并

    pd.concat([df1,df2],axis=1) 之所以上面两个例子都是并集,原因在于concat的join参数默认值是'outer',表示取并集(类似于SQL的外连接);而当明确指明join='...上面语句之所以要赋值,是因为 Pandas 中的append不会直接修改原始的df1对象。...,类似于SQL中的连接操作,而concat并没有基于列值匹配进行合并。...(2)merge中的两个合并对象只用逗号分隔,而concat中的两个合并对象要构成列表。 一对一连接:在起连接作用的关键列(employee)上,通过列值匹配进行合并。...suffixes:如果在合并过程中遇到了重叠的列名,则添加到重叠列名的后缀。 copy:如果为 False,则不复制数据。默认为 True。

    9500

    《利用Python进行数据分析·第2版》第8章 数据规整:聚合、合并和重塑8.1 层次化索引8.2 合并数据集8.3 重塑和轴向旋转8.4 总结

    在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。本章关注可以聚合、合并、重塑数据的方法。 首先,我会介绍pandas的层次化索引,它广泛用于以上操作。...df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。...外连接求取的是键的并集,组合了左连接和右连接的效果: In [44]: pd.merge(df1, df2, how='outer') Out[44]: data1 key data2 0...连接方式只影响出现在结果中的不同的键的值: In [50]: pd.merge(df1, df2, how='inner') Out[50]: data1 key data2 0 0...我们在稍后会回到pandas,学习更高级的分析。

    2.7K90

    数据分析之Pandas合并操作总结

    也就是要在df1的基础之上,如果df1有缺失值,就在df2的对应位置补上去,当然如果df1没有缺失值,则这个填充也就相当于没填充,也就意义不大了。...当然,如果df1的缺失值位置在df2中也是NaN,那也是不会填充的。...这里需要注意:这个也是在df1的基础之上进行改变,而这个update是连行列索引都不改变,不增加,就是在这个基础上,对df1中对应位置的元素改成df2中对应位置的元素。...这个例子就是,我们如果update了缺失值NaN,则就不会在原df1中把对应元素改成NaN了,这个缺失值是不会被填充的。...这里因为df1和df2的列索引相同,所以可以正常返回。而df1和df3的列索引不同,所以会报错。

    4.8K31

    3大利器详解-mapapplyapplymap

    Pandas三大利器-map、apply、applymap 我们在利用pandas进行数据处理的时候,经常会对数据框中的单行、多行(列也适用)甚至是整个数据进行某种相同方式的处理,比如将数据中的sex字段中男替换成...本文中介绍了pandas中的三大利器:map、apply、applymap来解决上述的需求。 ? 模拟数据 通过一个模拟的数据来说明3个函数的使用,在这个例子中学会了如何生成各种模拟数据。...男" else 0 return gender df2 = df.copy() # 将df["gender"]这个S型数据中的每个数值传进去 df2["gender"] = df2["gender...在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。...x;axis=1表示在列上操作 df5 ?

    62210

    合并Pandas的DataFrame方法汇总

    中的每一行在df1中都有一个值,所以在本例中,right联接类似于inner联接。...为了更好地说明它们是如何工作的,需要交换DataFrames的位置,并为“左联接”和“外联接”创建两个新变量: df_left = pd.merge(df2, df1, how='left', indicator...df_outer中,“id006”和“id007”只存在于右DataFrame中(在本例中是df1)。...这种追加的操作,比较适合于将一个DataFrame的每行合并到另外一个DataFrame的尾部,即得到一个新的DataFrame,它包含2个DataFrames的所有的行,而不是在它们的列上匹配数据。...concat()可以在水平和竖直(0轴和1轴)方向上合并,要按列(即在1轴方向上合并)将两个DataFrames连接在一起,要将axis值从默认值0更改为1: df_column_concat = pd.concat

    5.7K10

    python数据分析之pandas超详细学习笔记

    - - - 前言 pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包...()函数 import pandas as pd # 提取series的数据的值 s3 = pd.Series([1, 3, 14, 521]) # 直接获取值 print(s3.values) print...(np.arange(8).reshape(2, 4)) print(df2) 输出: 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2、自定义行和列的值 import...how中的any表示,含有空值即删除 ,all代表全部为空值才删除 print(df2.dropna(axis=0, how='any')) 输出: A B C D...inner的作用是取交集; outer的作用是取并集; left的作用是只取左边的表有值的情况; right的作用是只取右边的表有值的情况。 left和rigth的结果是outer的子集。

    1.6K40

    python单细胞学习笔记-day4

    ):去重并统计每个取值的次数 pandas:为series提供相应方法 .tolist():series向list转换 list():array 向 list转换 也可以使用集合,集合自动去重 2.矩阵...01:20:19 numpy 矩阵:没有行名和列名 numpy 矩阵:推荐只存放一种数据类型的数据,但可允许多种数据类型 2.1 新建矩阵 使用numpy模块中的array()函数 2.2 取子集 使用下标和切片法...,然后传递给pandas中的DataFrame()函数 可以使用index参数指定行名 方式2:从csv文件读取 import pandas as pd df2 = pd.read_csv("day3...df1.gene.tolist() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置...loc:基于标签(行名或者列名)或是布尔值 import pandas as pd df1 = pd.DataFrame({ 'gene': ['gene' + str(i) for i in

    5300
    领券