首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pthread_cond_wait()和pthread_cond_signal()的调用顺序是什么?

pthread_cond_wait()和pthread_cond_signal()是用于线程同步的POSIX线程库函数。

pthread_cond_wait()的调用顺序通常如下:

  1. 在进入临界区前获取互斥锁,确保只有一个线程可以进入临界区。
  2. 检查共享变量的条件是否满足,如果不满足,则调用pthread_cond_wait()进入等待状态,并释放互斥锁。
  3. 当其他线程改变了共享变量的条件,通过调用pthread_cond_signal()或pthread_cond_broadcast()来唤醒等待的线程。
  4. 被唤醒的线程重新获得互斥锁,并检查条件是否满足。如果不满足,则可能继续等待或者执行其他操作。

pthread_cond_signal()的调用顺序通常如下:

  1. 在进入临界区前获取互斥锁。
  2. 改变共享变量的条件。
  3. 调用pthread_cond_signal()或pthread_cond_broadcast()来唤醒等待的线程。
  4. 释放互斥锁,允许其他线程进入临界区。

pthread_cond_wait()和pthread_cond_signal()通常会搭配使用,以实现线程间的同步和通信。pthread_cond_wait()用于等待某个条件的发生,pthread_cond_signal()用于通知等待的线程条件已经发生。

这种线程同步机制可以用于解决生产者-消费者问题、读者-写者问题、多线程任务分配等并发场景。

以下是腾讯云的相关产品和链接地址:

  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云容器服务(TKE):https://cloud.tencent.com/product/tke
  • 腾讯云数据库(TencentDB):https://cloud.tencent.com/product/cdb
  • 腾讯云安全加速(SSL):https://cloud.tencent.com/product/ssl
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iot
  • 腾讯云移动开发(移动应用托管):https://cloud.tencent.com/product/meap
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云虚拟私有云(VPC):https://cloud.tencent.com/product/vpc

以上是腾讯云提供的一些与云计算相关的产品,用于满足不同场景下的需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

UNPv2第七章:互斥锁与条件变量

 pthread_mutex_lock()函数是一个阻塞型的上锁函数,若互斥锁已经上了锁,调用pthread_mutex_lock()函数对互斥锁再次上锁的话,调用线程会阻塞,直到当前互斥锁被解锁。  pthread_mutex_trylock()函数是一个非阻塞型的上锁函数,如果互斥锁没被锁住,pthread_mutex_trylock()函数将把互斥锁加锁, 并获得对共享资源的访问权限;如果互斥锁被锁住了,pthread_mutex_trylock()函数将不会阻塞等待而直接返回EBUSY(已加锁错误),表示共享资源处于繁忙状态。  如果互斥锁变量mutex已经上锁,调用pthread_mutex_unlock()函数将解除这个锁定,否则直接返回。该函数唯一的参数mutex是pthread_mutex_t数据类型的指针。该函数调用成功返回0,否则返回-1。

05

Linux线程编程同步之互斥锁和条件变量

今天是最后一篇关于Linux线程编程的文章分享,在这里我们先掌握基础的概念及其应用,后面在慢慢去深入学习。最近看到一句说的非常在理:理论’是你知道是这样,但它却不好用。‘实践’是它很好用,但你不知道是为什么。我想大多数学习者,和我一样,在学习的过程中,都会或多或少的有这种情况,不过自己坚信,你把基础打好(同时学的过程中,不要好高骛远,三心二意的,把自己先暂时用到的东西学明白,再去学其他东西,不要当前的,没学会,又跑去学其他的,而且又学不会,这样浪费时间和精力;这个这里基础打好,举个例子,你的c语言功底要打好,对指针的使用非常熟悉,甚至一些高级用法就是要平时慢慢积累和总结,以及内存原理要知道为什么是这样等方面),后面实战的话,就好多了,至少不会说我这个东西不会那个东西又不会,这样会让自己很痛苦当初为啥没学好基础,现在实战中漏洞百出。好了,废话不多说了,开始下面的主题分享:

03

Linux之生产者消费者模型(上)——单生产者单消费者

引入: 举个例子,我们想买个生活用品,但是没有交易场所的话,我们就只能直接去供货商那里去买。我们每人每次买一两件,对于供货商来说,为了这一两件商品去开启厂子里的机器进行生产,是很亏本的事情。因此,有了交易场所——超市等存在,它们作为交易商品的媒介,工作就是集中需求,分发产品。 消费者和生产者之间通过超市进行交易。当消费者没有消费的同时,生产者也可以继续生产;当消费者过来消费的同时,生产者也可以停止生产(例子:周内生产者上班生产商品,学生上学不来超市购买商品;周末生产者放假休息,不进行生产工作,学生过来超市购买商品)。由此,生产和消费这两件事就可以解耦了,我们把临时保存产品的场所称为缓冲区。

04

Linux下的多线程编程实例解析

线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。   为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。   使用多线程的理由之一是和进程相比,它是一种非常”节俭”的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种”昂贵”的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。   使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。   除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点:   1) 提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。   2) 使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。   3) 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。   下面我们先来尝试编写一个简单的多线程程序。

04
领券