# 根据列名来进行合并数据集
df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"])
df2 = spark.createDataFrame...([[4, 5, 6]], ["col1", "col2", "col0"])
df1.unionByName(df2).show()
# +----+----+----+
# |col0|col1|col2...# 计算指定两列的相关系数,DataFrame.corr(col1, col2, method=None),目前method只支持Pearson相关系数
df.corr("age", "score",...下面我们就来讲解一些常用的Spark资源配置的参数吧,了解其参数原理便于我们依据实际的数据情况进行配置。...下面说一个基本的参数设置的shell脚本,一般我们都是通过一个shell脚本来设置资源参数配置,接着就去调用我们的主函数。
#!