首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

用Python实现极大似然估计

极大似然估计(Maximum likelihood estimation, 简称MLE)是很常用的参数估计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。也就是说,如果已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值(请参见“百度百科”)。

03

Python爬虫之图片爬取

爬虫简介:(英语:web crawler),也叫网络蜘蛛(spider),是一种用来自动浏览万维网的网络机器人。网络爬虫始于一张被称作种子的统一资源地址(URL)列表。当网络爬虫访问这些统一资源定位器时,它们会甄别出页面上所有的超链接,并将它们写入一张“待访列表”,即所谓爬行疆域。此疆域上的URL将会被按照一套策略循环来访问。如果爬虫在执行的过程中复制归档和保存网站上的信息,这些档案通常储存,使他们可以较容易的被查看。阅读和浏览他们存储的网站上并即时更新的信息,这些被存储的网页又被称为“快照”。越大容量的网页意味着网络爬虫只能在给予的时间内下载越少部分的网页,所以要优先考虑其下载。高变化率意味着网页可能已经被更新或者被取代。一些服务器端软件生成的URL(统一资源定位符)也使得网络爬虫很难避免检索到重复内容。(摘自:维基百科)

04

Python数据分析(中英对照)·Simulating Randomness 模拟随机性

Many processes in nature involve randomness in one form or another. 自然界中的许多过程都以这样或那样的形式涉及随机性。 Whether we investigate the motions of microscopic molecules or study the popularity of electoral candidates,we see randomness, or at least apparent randomness, almost everywhere. 无论我们研究微观分子的运动,还是研究候选人的受欢迎程度,我们几乎处处都能看到随机性,或者至少是明显的随机性。 In addition to phenomena that are genuinely random,we often use randomness when modeling complicated systems 除了真正随机的现象外,我们在建模复杂系统时经常使用随机性 to abstract away those aspects of the phenomenon for which we do not have useful simple models. 将我们没有有用的简单模型的现象的那些方面抽象出来。 In other words, we try to model those parts of a process that we can explain in relatively simple terms,and we assume, true or not, that the rest is noise. 换句话说,我们试图对过程中那些我们可以用相对简单的术语解释的部分进行建模,并且我们假设,不管是真是假,其余部分都是噪音。 To put this differently, we model what we can,and whatever it happens to be left out, we attribute to randomness. 换一种说法,我们对我们能做的事情进行建模,不管发生什么,我们都将其归因于随机性。 These are just some of the reasons why it’s important to understand how to simulate random numbers and random processes using Python. 这些只是理解如何使用Python模拟随机数和随机进程很重要的一些原因。 We have already seen the random module. 我们已经看到了随机模块。 We will be using that to simulate simple random processes,but we’ll also take a look at some other tools the Python has to generate random numbers. 我们将使用它来模拟简单的随机过程,但我们还将看看Python生成随机数的其他一些工具。 Let’s see how we can use the random choice function to carry out perhaps the simplest random process – the flip of a single coin. 让我们看看如何使用随机选择函数来执行可能是最简单的随机过程——抛一枚硬币。 I’m first going to import the random library. 我首先要导入随机库。 So I type import random. 所以我输入import random。 Then we’ll use the random choice function. 然后我们将使用随机选择函数。 We first need parentheses. 我们首先需要括号。 And in this case, we need some type of a sequence, here a list,to contain the elements of the sequence. 在这种情况下,我们需要某种类型的序列,这里是一个列表,来包含序列的元素。 I’m going to go with two strings, H for heads and T for tails. 我要用两根弦,H代表正面,T代表反面。 If I now run this code, Python will pick one of the

03
领券