首页
学习
活动
专区
工具
TVP
发布

向量内积_向量的内积外积公式

向量内积 一般指点积; 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个 向量并返回一个实数值 标量的 二元运算。...[1] 两个向量a = [a1, a2,…, an]b = [b1, b2,…, bn]的点积定义为: a·b=a1b1+a2b2+……+anbn。...使用 矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为: a·b=a^T*b,这里的a^T指示 矩阵a的 转置。...点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成: 定义向量: 根据三角形余弦定理有: 根据关系c=a-b...(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有ab间的夹角θ: 根据这个公式就可以计算向量a向量b之间的夹角。

48920
您找到你想要的搜索结果了吗?
是的
没有找到

MATLAB 向量矩阵

本文内容:MATLAB 向量矩阵 ---- MATLAB 向量矩阵 1.输入数组 2.创建等间距向量 2.1 通过间距创建等间距向量 2.2 通过元素数目创建等间距向量 2.3 等间距列向量 3...2.1 通过间距创建等间距向量 我们可以用冒号运算符:生成一个等间距的向量: x = 2:12 仅指定起始值最终值来生成一个等间距的向量,同时注意,使用冒号运算符时,不需要方括号。...,但它们创建出的向量都是行向量,如何得到等间距的列向量呢?...为 rand 函数提供两个参数,来分别指定它的行数列数: x = rand(2,3) 这里 x 将会是一个 2×3 的随机数矩阵。...其他的数组创建函数也具有相同的用法: x = zeros(4) y = ones(6,3) 这里的 x y 分别是一个 4×4 的全0矩阵一个 6×3 的全1矩阵。

39110

python求解特征向量拉普拉斯矩阵

学过线性代数深度学习先关的一定知道特征向量拉普拉斯矩阵,这两者是很多模型的基础,有着很重要的地位,那用python要怎么实现呢?...numpyscipy两个库中模块中都提供了线性代数的库linalg,scipy更全面些。...特征值特征向量 import scipy as sc #返回特征值,按照升序排列,num定义返回的个数 def eignvalues(matrix, num): return sc.linalg.eigh...(matrix, eigvalues(0, num-1))[0] #返回特征向量 def eighvectors(matrix): return sc.linalg.eigh(matrix,...,获取所有的特征向量 vectors = eighvectors(matrix, 3) 拉普拉斯矩阵 很多图模型中都涉及到拉普拉斯矩阵,它有三种形式,这次给出的代码是D-A(度矩阵-邻接矩阵)第二种标准化的形式

36820

使用Python列表实现向量运算

Python中,列表支持与整数的乘法运算,但表示的是列表元素的重复,并生成新列表,如: >>> [1,2,3]*3 [1, 2, 3, 1, 2, 3, 1, 2, 3] Python列表不支持与整数的加...、减、除运算,也不支持列表之间的减、乘、除操作,而加法运算则表示列表元素的合并,并生成新列表,如: >>> [1,2,3]+[4,5,6] [1, 2, 3, 4, 5, 6] 对于向量而言,...经常需要这样的操作,例如向量所有分量同时加、减、乘、除同一个数,或者向量之间的加、减、乘、除运算,Python列表不支持这样的操作,但可以借助于内置函数或运算符模块来实现,如: >>> import...10)] >>> y [8, 1, 9, 7, 1, 5, 8, 4, 1, 9] >>> import operator >>> z = sum(map(operator.mul, x, y)) #向量内积...>>> z 278 >>> list(map(operator.add, x, y)) #向量对应元素相加 [10, 3, 18, 13, 8, 14, 10, 5, 3, 16] >>> list(

3.6K60

Python支持向量机(SVM)实例

SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。...以下内容参考自https://www.cnblogs.com/luyaoblog/p/6775342.html的博客,并将原文中Python2的代码更新为Python3的代码。...Python3代码: Python from sklearn import svm import numpy as np import matplotlib.pyplot as plt import...2. x = x[:, :2]是为方便后期画图更直观,故只取了前两列特征值向量训练。 3. sklearn.model_selection.train_test_split随机划分训练集与测试集。...随机数的产生取决于种子,随机数种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

90920

Python中的向量化编程

但是对于机器学习领域广为使用的python语言而言,并没有内置这样的功能,毕竟python是一门通用语言。好消息是,借助一些第三方库,我们也可以很容易的处理向量数值运算。...Numpy是Numerical Python的缩写,是Python生态系统中高性能科学计算和数据分析所需的基础软件包。 它是几乎所有高级工具(如Pandasscikit-learn)的基础。...TensorFlow使用NumPy数组作为基础构建模块,在这些模块的基础上,他们为深度学习任务(大量进行长列表/向量/数值矩阵的线性代数运算)构建了张量对象图形流。...许多Numpy运算都是用C实现的,相比Python中的循环,速度上有明显优势。所以采用向量化编程,而不是普通的Python循环,最大的优点是提升性能。...另外相比Python循环嵌套,采用向量化的代码显得更加简洁。

1.5K30

矩阵向量求导入门

本文主要介绍在机器学习公式推导过程中经常会用到的矩阵向量求导入门知识。...之前的文章也提过,本科的高数线性代数课程中一般都没有介绍这部分知识,于是可能就有朋友会担心矩阵求导是不是很难很高深,其实完全不用担心,理解它只需要了解导数矩阵的概念就足够了。...通常,为了便于表达交流我们会把矩阵当着一个整体,而在具体针对矩阵的计算时,其实还是对其元素分别进行计算,比如两个矩阵的加法,实质上是对两个矩阵中对应位置元素做加法,最后形成一个新的矩阵。...,于是得到 总结 本文主要介绍了矩阵向量最基础最常见的几种求导法则,这些法则对于我们理解矩阵求导很重要,但其求导过程比较繁琐,所以我们在实际应用过程中多数时候并不会按这些法则对矩阵的每个元素进行逐个求导...,而是会利用一些常见的结论、公式复合函数求导法则等,这些知识我们下一篇文章再介绍。

76210

python实现支持向量机之线性支持向量机定义(理论一)

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器...个特征向量, ? 为类标记,当它等于+1时为正例;为-1时为负例。再假设训练数据集是线性可分的。 在超平面wx+b=0确定的情况下,|wx+b|能够相对地表示x距超平面的远近。...假设我们成比例的改变wb,比如变为2w2b,超平面没有变,但是函数间隔却会变为原来的两倍,因此,可以对法向量w施加某些约束,如规范化||w||=1,使得间隔是确定的,这时函数间隔就变为几何间隔。...+wnxn+b=0,用w表示所有系数的向量,x表示所有特征的向量,则有: ? 再乘以样本的标签就得到了带符号距离。...考虑到函数间隔几何间隔的关系,可以转换为: ? ? ? 也就是说,现在支持向量机转换为以下问题了: ?

61420

Python机器学习实战】感知机支持向量机学习笔记(二)

*,即:   至于如何求解α*后文再进一步详细展开,在求解α*之前先对支持向量进行解释,首先描述支持向量,假设支持向量集合用SV表示,那么: 在硬间隔中对任意xi∈SV<=>αi>0; 在软间隔中任意...具体而言: 当αi=0时,此时样本xi被正确分类,样本点可能落在分离边界上也可能不落在分离边界上,xi不是支持向量; 当0<αi<C时,样本xi被正确分类,且xi是支持向量; 当αi=C时: ξi=0时...,样本xi被正确分类,样本落在分离边界上,且为支持向量; 0<ξi<1时,样本xi被正确分类,样本落在分离边界分离超平面之间; ξi=1时,样本刚好落在分离超平面上; ξi>1时,样本xi被错误分类。...i,该下标对应的αi作为第一变量,即:   上述就是SMO算法的大致步骤,仅说明了参数选取的规则方法,具体优化求解迭代到后文中引入核函数后,一并进行解释。...dwdb: 然后根据dwdb更新预测值y:        至此一次迭代完成,返回至第二步。

38600

python实现支持向量机之求解线性支持向量机(理论二)

上节讲到了支持向量机转换为以下问题了: ? 在线性可分的情况下,将距离分离超平面最近的样本点的实例称为支持向量,支持向量是使yi(wxi+b) -1=0的点。...对于yi=+1的正例点,支持向量在超平面wx+b=1上,对于yi=-1的负例点,支持向量在wx+b=-1上,如图所示: ? ? 举个例子: ? ?...使用对偶算法求解支持向量机的好处: 1、对偶问题更易于求解 2、自然引入核函数,进而推广到非线性分类问题 如何利用对偶算法来求解? 首先建立拉格朗日函数: ? 其中αi>=0,i=1,2,...,N。...所以,支持向量机就可以转换为以下问题了: ? ? 举个计算的例子: ? ? 以上摘自统计学习方法,仅为自己方便复习所用。

35110

空间向量模型tf-idf向量空间模型tf-idf

向量空间模型 向量空间模型是一个把文本文件表示为标识符(比如索引)向量的代数模型,它应用于信息过滤、信息检索、索引以及相关排序。 1 定义 文档查询都用向量来表示: ?...如果将词语选为词组,那么向量的维数就是词汇表中的词语个数(出现在语料库中的不同词语的个数)。 通过向量运算,可以对各文档各查询作比较。...2 应用 据文档相似度理论的假设,如要在一次关键词查询中计算各文档间的相关排序,只需比较每个文档向量原先查询向量(跟文档向量的类型是相同的)之间的角度偏差。...实际上,计算向量之间夹角的余弦比直接计算夹角本身要简单。 ? 其中d2▪q是文档向量(即图中的d2)查询向量(图中的q)的点乘。||d2||是向量d2的模,而||q||是向量q的模。...3 在向量空间模型里的应用 tf-idf权重计算方法经常会余弦相似性(cosine similarity)一同使用于向量空间模型中,用以判断两份文件之间的相似性 ---- 参考维基百科 向量空间模型

1.8K30

R语言的数据结构(包含向量向量化详细解释)

更多内容请参考《R语言编程艺术》 ——————————————— 向量类型是R语言的核心。深入理解向量对R中数据结构及其操作,函数的开发应用有着重要意义。...1 几个概念:向量向量化,标量,元素,组件,标签,原子向量,递归向量 以下叙述参考书籍加自己理解,有叙述不妥的留言 向量vector标量 个人理解,向量是有方向的,由大于等于2个元素构成的数据类型...向量有哪些基本类型 两大类,原子向量列表(又叫递归向量) 原子向量有6种类型:逻辑型,整型,双精度型,字符型,复数型原始型。整型双精度型统称为数值型向量。...但这两个不是向量化函数。??? 3.3向量化的ifelse函数 ifelse(b,u,v) b是布尔值向量,uv是向量。返回向量。...所以ifelse是向量化的。 4 常见数据结构向量的关系及常见操作 4.1矩阵 前已述及,矩阵也是向量,特殊的向量,包含量阿哥附加的属性:行列。所以,矩阵也有模式,例如数值型或字符型。

5.6K20

Python+numpy实现函数向量

Python本身对向量操作的支持并不是很好,需要借助列表推导式或函数式编程来实现,例如: >>> import random # 生成随机测试数据 >>> x = random.sample(range...(1000), 5) >>> y = random.sample(range(1000), 5) # 列表推导式,模拟向量减法 >>> [vecX-vecY for vecX, vecY in zip(...x,y)] [-171, -370, -66, 282, 231] # 列表推导式,模拟向量减法 >>> f = lambda a, b: a-b >>> [f(a,b) for a, b in zip...(x,y)] [-171, -370, -66, 282, 231] # 函数式编程,map,模拟向量加法 >>> list(map(lambda a, b: a+b, x, y)) [1067, 488..., 1486, 998, 327] Python扩展库numpy本身提供的大量函数都具有向量化的特点,并且可以把普通的Python函数向量化,可以使得Python操作向量更方便: >>> import

2.8K50

支持向量机及Python代码实现

这种使得数据集到分类器之间的间距(margin)最大化的思想就是支持向量机的核心思想,而离分类器距离最近的样本成为支持向量。既然知道了我们的目标就是为了寻找最大边距,怎么寻找支持向量?如何实现?...证明垂直很简单,假设X’X’’都是超面上的一点, ? ,因此W垂直于超面。知道了W垂直于超面,那么Xn到超面的距离其实就是Xn超面上任意一点x的连线在W上的投影,如(图四)所示: ?...(支持向量),然后最大化边距。...转换成-11就可以把标签信息完美的融进等式约束中,(公式三)最后一行也体现出来咯。...(公式十一) 其中K(Xn,Xm)是核函数,上面目标函数比没有多大的变化,用SMO优化求解就行了,代码如下: [python] view plaincopy def smoPK(dataMatIn

1.2K60
领券