首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python数据分析——数据分类汇总与统计

这些库提供了丰富的数据处理、分析和可视化功能,使得Python在数据分析领域独具优势。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...; index=用于分组的列名或其他分组键,出现在结果透视表的行; columns =用于分组的列名或其他分组键,出现在结果透视表的列; values = 待聚合的列的名称,默认聚合所有数值列;...添加行/列小计和总计,默认为 False; fill_value = 当出现nan值时,用什么填充 dropna =如果为True,不添加条目都为NA的列; margins_name = 当margins...为True时,行/列小计和总计的名称; 【例17】对于DataFrame格式的某公司销售数据workdata.csv,存储在本地的数据的形式如下,请利用Python的数据透视表分析计算每个地区的销售总额和利润总额

83110

从pandas中的这几个函数,我看懂了道家“一生二、二生三、三生万物”

导读 pandas是用python进行数据分析最好用的工具包,没有之一!从数据读写到预处理、从数据分析到可视化,pandas提供了一站式服务。...普通聚合函数mean和agg的用法区别是,前者适用于单一的聚合需求,例如对所有列求均值或对所有列求和等;而后者适用于差异化需求,例如A列求和、B列求最值、C列求均值等等。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...分组后如不加['成绩']则也可返回dataframe结果 从结果可以发现,与用groupby进行分组统计的结果很是相近,不同的是groupby返回对象是2个维度,而pivot_table返回数据格式则更像是包含...pivot_table+stack=groupby 类似地,对groupby分组聚合结果进行unstack,结果如下: ?

2.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中实现聚合统计,有几种方法?

    导读 Pandas是当前Python数据分析中最为重要的工具,其提供了功能强大且灵活多样的API,可以满足使用者在数据分析和处理中的多种选择和实现方式。...进一步的,其具体实现形式有两种: 分组后对指定列聚合,在这种形式中依据country分组后只提取name一列,相当于每个country下对应了一个由多个name组成的series,而后的count即为对这个...此时,依据country分组后不限定特定列,而是直接加聚合函数count,此时相当于对列都进行count,此时得到的仍然是一个dataframe,而后再从这个dataframe中提取对特定列的计数结果。...对于聚合函数不是特别复杂而又希望能同时完成聚合列的重命名时,可以选用此种方式,具体传参形式实际上采用了python中可变字典参数**kwargs的用法,其中字典参数中的key是新列名,value是一个元组的形式...而后,groupby后面接的apply函数,实质上即为对每个分组下的子dataframe进行聚合,具体使用何种聚合方式则就看apply中传入何种参数了!

    3.2K60

    用Python实现excel 14个常用操作,Vlookup、数据透视表、去重、筛选、分组等

    比如这里的需求填充客户名称缺失值:就可以根据存货分类出现频率最大的存货所对应的客户名称去填充。 这里我们用简单的处理办法:用0填充缺失值或则删除有客户编码缺失值的行。...sale.groupby("地区名称")["利润"].sum().describe() 根据四分位数把地区总利润为[-9,7091]区间的分组为“较差”,(7091,10952]区间的分组为"中等"...#先建立一个Dataframe sale_area=pd.DataFrame(sale.groupby("地区名称")["利润"].sum()).reset_index() #设置bins,和分组名称...最后想说说,我觉得最好不要拿excel和python做对比,去研究哪个好用,其实都是工具,excel作为最为广泛的数据处理工具,垄断这么多年必定在数据处理方便也是相当优秀的,有些操作确实python会比较简单...比如一个很简单的操作:对各列求和并在最下一行显示出来,excel就是对一列总一个sum()函数,然后往左一拉就解决,而python则要定义一个函数(因为python要判断格式,若非数值型数据直接报错。)

    2.7K10

    Python数据处理神器pandas,图解剖析分组聚合处理

    点击上方"数据大宇宙",设为星标,干货资料,第一时间送到! 前言 身边有许多正在学习 Python 的 pandas 库做数据处理的小伙伴们都遇到一个问题——分组聚合。...数据处理时同样需要按类别分组处理,面对这样的高频功能需求, pandas 中提供 groupby 方法进行分组。 按 class 进行分组 如下图的代码: 17-19行,两行的写法是一样的。...注意一点,只是调用 groupby 方法,没有进行任何的处理,只返回一个迭代器。 行21,只有当你需要数据时,才会真正执行分组的运算 返回结果是一个元组(key,每个组的记录的DataFrame)。...transform 的处理函数还可以返回一个列(也就是有多行),但必须要求最终合并结果与原数据行数一致。 返回的结果不会出现分组的 key 字段。 看起来 transform 有不少规则需要记住。...一般在使用 transform 时,在 groupby 之后指定一列。 自定义函数中可以很容易求得 value 的均值。

    1.3K21

    python数据分析——数据分类汇总与统计

    这些库提供了丰富的数据处理、分析和可视化功能,使得Python在数据分析领域独具优势。...在实际的数据分析过程中,我们可能需要对数据进行清洗、转换和预处理,以满足特定的分析需求。Python提供了丰富的数据处理工具,如数据清洗、缺失值处理、异常值检测等,使得数据分析过程更加高效和准确。...按列分组 按列分组分为以下三种模式: df.groupby(col),返回一个按列进行分组的groupby对象; df.groupby([col1,col2]),返回一个按多列进行分组的groupby...首先,根据day和smoker对tips进行分组,然后采用agg()方法一次应用多个函数。 如果传入一组函数或函数名,得到的DataFrame的列就会以相应的函数命名。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引

    12410

    「Python」数据分析奇技淫巧

    '] = False # 负号显示 当同时绘制的两组数据差距过大时,可以使用: plt.yscale('log') # 对y轴进行log缩放,减小两组图视觉上的差异,更方便观察(★★★★★) 进行对数转换...,减小不同组数据之间的量级差异。...处理前 处理后 数据透视表三个分组统计函数 size()、sum()、count()三个统计函数,能分别统计分组数量、不同列的分组和、不同列的分组数量。...3 3 b 2 2 2 df.groupby(['key1', 'key2']).count() # key1列和key2列的values共有四种随机组合:a-one、a-two...,使用count()函数好像根本没有意义~ sum() 不同于无聊的count()函数,sum()函数在分组聚合中感觉还是有点用的: df.groupby('key1').sum() # 将df按照key1

    25720

    pandas的类SQL操作

    这篇文章我们先来了解一下pandas包中的类SQL操作,pandas中基本涵盖了SQL和EXCEL中的数据处理功能,灵活应用的话会非常高效。...你有没有意识到差异在哪里? 没看错,获取的数据量不一样,大家自己考虑一下原因吧~ 条件查询 ? ?...groupby分组功能 ? ? 这一功能主要是为了实现数据集的分组功能,如下图: ?...几种常用的用法有: 单列分组:然后按照另一列数据计算相应值: print(data1.groupby('a')['b'].mean()) 多列分组:然后按照另一列数据计算相应值: Agg的作用即为封装对应的函数...print(data1.groupby(['a','b']).agg('mean')) 多列分组:然后按照多列分别计算相应值: data1 = pd.DataFrame([['1','23',3, 5

    1.9K21

    数据分析必备!Pandas实用手册(PART III)

    这章节也是我认为使用pandas 处理数据时最令人愉快的部分之一 对某一轴套用相同运算 你时常会需要对DataFrame 里头的每一个栏位(纵轴)或是每一行(横轴)做相同的运算,比方说你想将Titanic...: 找出栏位里所有出现过的值 针对特定栏位使用unique函数即可: 分组汇总结果 很多时候你会想要把DataFrame里头的样本依照某些特性分门别类,并依此汇总各组(group)的统计数据。...让我们再次拿出Titanic数据集: 你可以将所有乘客(列)依照它们的Pclass栏位值分组,并计算每组里头乘客们的平均年龄: 你也可以搭配刚刚看过的describe函数来汇总各组的统计数据: 你也可以依照多个栏位分组...选择对你来说最只管又好记的方式吧! 结合原始数据与汇总结果 不管是上节的groupby搭配agg还是pivot_table,汇总结果都会以另外一个全新的DataFrame表示。...另外小细节是你可以利用numpy的broadcasting运算轻松地将DataFrame里的所有数值做操作(初始df_date时用到的*10) 简易绘图并修改预设样式 在Python世界里有很多数据可视化工具供你选择

    1.8K20

    Pandas从入门到放弃

    ,获取的永远是列,索引只会被认为是列索引,而不是行索引;相反,第二种方式没有此类限制,故在使用中容易出现问题。...①数据排序 在处理带时间戳的数据时,如地铁刷卡数据等,有时需要将数据按照时间顺序进行排列,这样数据预处理时能更加方便,或者按照已有的索引给数据进行重新排序,DataFrame提供了这类方法。...() 除了对单一列进行分组,也可以对多个列进行分组。...因此,可以通过对GroupBy的结果进行遍历,再获取我们期望的信息 for name, group in df3: print(name) # 分组后的组名 print(group)...Pandas是python的一个数据分析包,主要是做数据处理用的,以处理二维表格为主。

    9610

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    二、非聚合类方法   这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby(),首先读入数据,这里使用到的全美婴儿姓名数据,包含了1880-2018...(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据而不是Series.apply()那样每次处理单个值),注意在处理多个值时要给apply()添加参数axis...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果,主要可以进行以下几种操作: ●...3.2 利用agg()进行更灵活的聚合   agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典

    5.1K60

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。...譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。

    5K10

    数据科学的原理与技巧 三、处理表格数据

    我们将提出一个问题,将问题分解为大体步骤,然后使用pandas DataFrame将每个步骤转换为 Python 代码。...对行排序 .sort_values() 分组和透视 在本节中,我们将回答这个问题: 每年最受欢迎的男性和女性名称是什么?...总结 我们现在有了数据集中每个性别和年份的最受欢迎的婴儿名称,并学会了在pandas中表达以下操作: 操作 pandas 分组 df.groupby(label) 多列分组 df.groupby([label1...但在处理文本数据时,在使用pandas内置的字符串操作函数通常会更快。...一般来说,许多字母的条形长度之间的差异意味着,如果我们只知道他们的名字的最后一个字母,我们往往可以准确猜测一个人的性别。

    4.6K10

    Pandas 2.2 中文官方教程和指南(二十·二)

    过滤将尊重对 GroupBy 对象列的子集。...当存在具有相同名称的列和索引时,您可以使用key按列分组,使用level按索引分组。...当列和索引具有相同的名称时,您可以使用key按列进行分组,并使用level按索引进行分组。...例如,想象一下有一个 DataFrame,其中包含商店、产品、收入和销售数量的列。我们希望对每个店铺和每个产品进行分组计算价格(即收入/数量)。...这在处理中间类别步骤时可能很有用,当组行之间的关系比它们的内容更重要时,或者作为仅接受整数编码的算法的输入。(有关 pandas 对完整分类数据的支持的更多信息,请参阅分类介绍和 API 文档。)

    46300

    Pandas_Study02

    去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...["gake"].fillna(method = 'bfill',inplace=True, axis = 0) # 对整个df 正常,按列操作,取最先出现NaN值的前一列数值,用来填充接下去出现NaN...Series或DataFrame的各个值进行相应的数据的处理 对series 使用apply # 对series 使用apply ,会将series 中的每个元素执行操作 s = pd.Series(np.arange...([df1, df2]) 当然,列标和行标不一定是对应的,这个时候两DataFrame未匹配上的label或columns下的值为NaN concat 函数 同样的可以指定是按行操作还是按列操作。..."|" # 查看分组后的统计数据 print dg.describe() 也支持多列分组 dg1 = df0.groupby(["fruit", "supplier"]) for n, g in dg1

    20510

    DataFrame和Series的使用

    DataFrame和Series是Pandas最基本的两种数据结构 可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python...的columns属性,获取DataFrame中的列名 df.columns # 查看df的dtypes属性,获取每一列的数据类型 df.dtypes df.info() Pandas与Python常用数据类型对照...[:,[0,2,4,-1]] df.iloc[:,0:6:2] # 所有行, 第0 , 第2 第4列 可以通过行和列获取某几个格的元素 分组和聚合运算 先将数据分组 对每组的数据再去进行统计计算如...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...pop','gdpPercap']].mean() # 根据year分组,查看每年的life平均值,pop平均值和gpd平均值,用mean做聚合运算 也可以根据两个列分组,形成二维数据聚合 df.groupby

    10910

    Pandas

    简介 Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...,这里引入 python 的一些函数 使用 agg 方法聚合数据 agg,aggregate 方法都支持对每个分组应用某函数,包括 Python 内置函数或自定义函数。...其中 x 为 DataFrame 或分组对象 GroupBy object 的列的泛指。...默认为False 实际应用过程中出现的一个问题是在做数据透视表时行分组建和计算键不能是同一个键,例如对于一个df的a列,该列存储的是不同类型的文本数据,我想要统计每一个文本数据出现的次数,这个时候就既需要...\的汽车销售数据交叉透视表前10行10列 为:\n',vsCross.iloc[:10,:10]) 转换数据–DataFrame 数据离散化 在进行数据分析时,需要先了解数据的分布特征,如某个值的出现频次

    9.2K30
    领券