首页
学习
活动
专区
圈层
工具
发布

Pandas数据清洗:缺失值处理

- `value`:用指定的值填充缺失值。- `method='ffill'`:用前一个非缺失值填充(前向填充)。- `method='bfill'`:用后一个非缺失值填充(后向填充)。...代码案例# 用指定的值填充缺失值df_fill_value = df.fillna(0)print(df_fill_value)# 前向填充df_ffill = df.fillna(method='ffill...')print(df_ffill)# 后向填充df_bfill = df.fillna(method='bfill')print(df_bfill)输出: A B C0 1.0 5.0...常见问题及解决方案4.1 数据类型不一致在处理缺失值时,有时会遇到数据类型不一致的问题。例如,某个列的数据类型应该是整数,但由于缺失值的存在,Pandas会将其自动转换为浮点数。...参考资料Pandas官方文档:https://pandas.pydata.org/pandas-docs/stable/Python数据科学手册:https://jakevdp.github.io/PythonDataScienceHandbook

74010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas知识点-缺失值处理

    从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...有 ffill,pad,bfill,backfill 四种填充方式可以使用,ffill 和 pad 表示用缺失值的前一个值填充,如果axis=0,则用空值上一行的值填充,如果axis=1,则用空值左边的值填充...bfill 和 backfill 表示用缺失值的后一个值填充,axis的用法以及找不到填充值的情况同 ffill 和 pad 。...pad(axis=0, inplace=False, limit=None): 用缺失值的前一个值填充。 ffill(): 同pad()。 bfill(): 用缺失值的后一个值填充。...backfill(): 同bfill()。 在进行数据填充时,可能填充之后还有空值,如用ffill 和 pad填充时,数据第一行就是空值。

    5.6K40

    pandas每天一题-题目17:缺失值处理的多种方式

    这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...上期文章:pandas每天一题-题目16:条件赋值的多种方式 后台回复"数据",可以下载本题数据集 如下数据: import pandas as pd import numpy as np df =...order_id 列存在重复 item_name 是明细项物品名称 quantity 是明细项数量 item_price 是该明细项的总价钱 choice_description 是每一项更详尽的描述 例如...') 行4:参数 method 可以是 'ffill' 前向参考,'bfill' 后向参考。...篇幅关系,我把分组填充缺失值放到下一节 ---- 推荐阅读: 懂Excel就能轻松入门Python数据分析包pandas(七):分列 Python入门必备教程,高手都是这样用Pycharm写Python

    80510

    利用 Pandas 的 transform 和 apply 来处理组级别的丢失数据

    文章结构: Pandas fillna 概述 当排序不相关时,处理丢失的数据 当排序相关时,处理丢失的数据 Pandas fillna 概述 ?...图片来自 Pixabay Pandas 有三种通过调用 fillna()处理丢失数据的模式: method='ffill':ffill 或 forward fill 向前查找非空值,直到遇到另一个非空值...例如,这个替换值可以是 -999,以表示缺少该值。 例子: ? ? 当排序不相关时,处理丢失的数据 ?...下载数据帧中的数据示例 让我们看看我们每年有多少国家的数据。 ?...扩展数据帧,所有国家在 2005 年到 2018 年间都有数据 2.在对每个国家分组的范围之外的年份内插和外推 # Define helper function def fill_missing(grp

    2.2K10

    pandas.fillna 妙招拨云见日

    这是 pandas 快速上手系列的第 6 篇文章,本篇详细介绍了pandas.fillna() 填充缺失值(NaN)的各种妙招,包括用常数值填充缺失值、用前一个值或后一个值填充、用列的均值、不同列使用不同值填充等方法...先初始化一个数据集 dataframe In [43]: import pandas as pd ...: ...: df = pd.DataFrame({ ...:...,则第一行的 NaN 会被跳过填充,设置 method='ffill' In [44]: # 用前一个值填充缺失值 ...: df_filled = df.fillna(method='ffill...NaN 会被跳过,设置 method='bfill' In [45]: # 用后一个值填充缺失值 ...: df_filled = df.fillna(method='bfill')...2.0 2.0 2 0.0 3.0 3 4.0 1.0 限制填充次数,每列最多填充 1 次 In [51]: df.fillna(method='ffill', limit=1) Out[51

    64600

    pandas库的简单介绍(2)

    3、 DataFrame数据结构 DataFrame表示的是矩阵数据表,每一列可以是不同的值类型(数值、字符串、布尔值等)。...另外一个构建的方式是字典嵌套字典构造DataFrame数据;嵌套字典赋给DataFrame,pandas会把字典的键作为列,内部字典的键作为索引。...对于顺序数据,例如时间序列,重建索引时可能会需要进行插值或填值。method方法可选参数允许我们使用ffill等方法在重建索引时插值,ffill方法会将值前项填充;bfill是后向填充。...另外一种重建索引的方式是使用loc方法,可以了解一下: reindex方法的参数表 常见参数 描述 index 新的索引序列(行上) method 插值方式,ffill前向填充,bfill后向填充...fill_value 前向或后向填充时缺失数据的代替值

    2.7K10

    pandas中使用fillna函数填充NaN值「建议收藏」

    ’,‘backfill’, ‘bfill’, None}, default None pad/ffill:用前一个非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值...None:指定一个值去替换缺失值(缺省默认这种方式) 1.3 limit参数: 限制填充个数 1.4 axis参数 修改填充方向 补充 isnull 和 notnull 函数用于判断是否有缺失值数据...代码实例 #导包 import pandas as pd import numpy as np from numpy import nan as NaN df1=pd.DataFrame([[1,2,3...axis=1 对每行数据进行操作 df2 = pd.DataFrame(np.random.randint(0,10,(5,5))) df2.iloc[1:4,3] = None df2.iloc[...的基础运算请参考这篇文章->pandas | DataFrame基础运算以及空值填充 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170012.html原文链接:

    3K40

    fillna函数用法_fill…with

    ,‘backfill’, ‘bfill’, None}, default None pad/ffill:用前一个非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值...None:指定一个值去替换缺失值(缺省默认这种方式) limit参数:限制填充个数 axis参数:修改填充方向 #导包 import pandas as pd import numpy...='ffill') 运行结果: 2.method = ‘bflii’/’backfill’:用下一个非缺失值填充该缺失值 #2.method = 'bflii'/'backfill':用下一个非缺失值填充该缺失值...df2.fillna(method='bfill') 运行结果: 四、指定limit参数 #四、指定limit参数 #用下一个非缺失值填充该缺失值 #只填充2个 df2.fillna(method...='bfill', limit=2) 运行结果: 五、指定axis参数 #五、指定axis参数 df2.fillna(method="ffill", limit=1, axis=1) 运行结果:

    74010

    快速掌握Series~过滤Series的值和缺失值的处理

    这系列将介绍Pandas模块中的Series,本文主要介绍: 过滤Series的值 单条件筛选 多条件筛选 Series缺失值的处理 判断value值是否为缺失值 删除缺失值 使用fillna()填充缺失值...使用fillna; 使用指定值填充缺失值; 使用插值填充缺失值; 向前填充ffill; 向后填充bfill; # 创建一个带缺失值的Series import pandas as pd s = pd.Series...(s.fillna(value = 0)) print("-"*5 + "向前填充ffill" + "-"*5) print(s.fillna(method = "ffill")) print("-"...*5 + "向后填充bfill" + "-"*5) print(s.fillna(method = "bfill")) result: -----原来的Series----- 0 1.0 1...-----向前填充ffill----- 0 1.0 1 2.0 2 2.0 3 4.0 dtype: float64 -----向后填充bfill----- 0 1.0

    10.7K41

    时间序列的操作

    如果想在按周分隔的时候指定从周几开始,例如周一,则: pd.date_range('2016-01-01', periods=100, freq='w-mon') 按小时产生数据 pd.date_range...bfill和ffill 这是resample的两个方法,用于数据的填充。...当采样频率提高之后,可能导致原始数据不够,例如s1是按照“日”为单位进行排列的,如果按照小时进行采样的话必然不能采,所以可以使用bfill和ffill对数据进行填充。 ?...bfill是向上填充,即将2017-01-01 01:00:00至2017-01-01 23:00:00的值都填充为2017-01-02 00:00:00的值 ?...ffill是向下填充,即将2017-01-01 01:00:00至2017-01-01 23:00:00的值都填充为2017-01-01 00:00:00的值 三、时间序列画图 时间序列数据适合画基于时间的曲线图

    1.5K10

    手把手教你用pandas处理缺失值

    在统计学应用中,NA数据可以是不存在的数据或者是存在但不可观察的数据(例如在数据收集过程中出现了问题)。...处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:用某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...value:标量值或字典型对象用于填充缺失值 method:插值方法,如果没有其他参数,默认是'ffill' axis:需要填充的轴,默认axis=0 inplace:修改被调用的对象,而不是生成一个备份...limit:用于前向或后向填充时最大的填充范围关于作者:韦斯·麦金尼(Wes McKinney)是流行的Python开源数据分析库pandas的创始人。...他是一名活跃的演讲者,也是Python数据社区和Apache软件基金会的Python/C++开源开发者。目前他在纽约从事软件架构师工作。

    3.1K10

    Pandas数据分析之Series和DataFrame的基本操作

    转自:志学python 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据...如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。 ?...fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?...八、带有重复值的轴索引 索引不强制唯一,例如一个重复索引的 Series: ?

    1.4K20

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据index...如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。 ?...fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?...八、带有重复值的轴索引 索引不强制唯一,例如一个重复索引的 Series: ?

    1.1K20

    Python数据科学手册(六)【Pandas 处理丢失的数据】

    None代替丢失值 第一个被Pandas使用的哨兵值是None, 由于None是Python对象,所以它并不适合所有情况,只能用于数组的类型为对象的情况。...,当遇到NA值时Pandas会自动转型,例如下面的例子,integer会转型为浮点型: x = pd.Series(range(2), dtype=int) x[0] = None 针对Null值的操作...isnull():用于创建掩码数组 notnull():isnull()的反操作 dropna(): 返回过滤后的数据 fillna(): 返回填充后的数据 检测null值 Pandas提供的isnull...2.0 d 2.0 e 3.0 dtype: float64 还可以使用后一个值来填充: # back-fill data.fillna(method='bfill') 结果为: a...1.0 b 2.0 c 2.0 d 3.0 e 3.0 dtype: float64 对于DataFrame,可以指定填充的轴: df.fillna(method='ffill'

    2.6K30

    玩转Pandas,让数据处理更easy系列5

    玩转Pandas,让数据处理更easy系列1 玩转Pandas,让数据处理更easy系列2 玩转Pandas,让数据处理更easy系列3 玩转Pandas,让数据处理更easy系列4 以上4篇总结了...Pandas是基于Numpy(Numpy基于Python)基础开发,因此能和带有第三方库的科学计算环境很好地进行集成。...02 Pandas核心应用场景 按照使用逻辑,盘点Pandas的主要可以做的事情: 能将Python, Numpy的数据结构灵活地转换为Pandas的DataFrame结构(玩转Pandas,让数据处理更...再说method关键词填充效果,当method设置为 ffill时,填充效果如下所示,取上一个有效值填充到下面行, 原有NaN的表格: ?...Python 6. 数据处理三剑客 7. 数学知识 8. 数据预处理 9. 机器学习算法实例大全 10. 深度学习 11.

    2.2K20
    领券