首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Numpy中的矩阵运算

安装与使用 大型矩阵运算主要用matlab或者sage等专业的数学工具,但我这里要讲讲python中numpy,用来做一些日常简单的矩阵运算!...这是 numpy官方文档,英文不太熟悉的,还有 numpy中文文档 numpy 同时支持 python3 和 python2,在 python3 下直接pip install安装即可,python2 的话建议用...) # 创建初始化为0的矩阵 # .transpose()转置矩阵 .inv()逆矩阵 # .T转置矩阵,.I逆矩阵 举个栗子 # python3 import numpy as np # 先创建一个长度为...) print(mat2*mat1) # 或者你可以用 np.dot()以及 np.multiply() 要注意:numpy 的数组和 python 的列表是有区别的,比如:列表 list 只有一维。...然后 numpy 的数组和矩阵也有区别!比如:矩阵有逆矩阵,数组是没有逆的!! END

1.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python中的Numpy(4.矩阵操作(算数运算,矩阵积,广播机制))

    参考链接: Python中的numpy.divide 1.基本的矩阵操作:  '''1.算数运算符:加减乘除''' n1 = np.random.randint(0, 10, size=(4, 5))...divide = np.divide(n1, 2) print("除的方法结果为:", n1_divide) '''3.矩阵积''' a = np.random.randint(0,10,size=(2,3...)) b = np.random.randint(0,10,size=(3,2)) print(a) print(b) c_dot = np.dot(a,b)   # 给a与b求矩阵积 print("a...与b的矩阵积:",c_dot)    矩阵积的具体算法:  '''4.广播机制     ndarray两条规则:     ·规则一: 为缺失的维度补1  (1代表的是补了1行或者1列)     ·规则二...:假定缺失元素用已有值填充 ''' n1 = np.ones((2,3)) n2 = np.arange(3) print("n1:",n1) print("n2:",n2) '''numpy的广播机制

    94210

    Python Numpy文件读写中的内存映射应用

    支持大文件处理:能够处理超过系统内存限制的大文件,而不影响程序的性能。 使用Numpy的memmap实现内存映射 Numpy通过numpy.memmap函数实现内存映射文件操作。...它的用法类似于普通的Numpy数组,只不过数据存储在磁盘文件中,而不是完全加载到内存中。 创建内存映射文件 可以使用numpy.memmap来创建一个内存映射数组,该数组与磁盘文件关联。...内存映射文件可以像操作普通的Numpy数组一样进行数据访问,但实际上只会加载必要的数据到内存中。...总结 内存映射文件是处理大规模数据集时的强大工具,特别是在数据集过大而无法一次性加载到内存中的情况下,使用Numpy的memmap函数可以有效地进行文件I/O操作,降低内存占用,提高文件处理效率。...通过合理使用内存映射文件,可以在Python中高效地处理超大规模的数据集,为机器学习、科学计算等领域的应用提供强有力的支持。

    25010

    python numpy--矩阵的通用函数

    参考链接: Python中的numpy.logical_not 一、概念  通用函数(ufunc)是一种对ndarray中的数据执行元素级运算的函数。...返回一个结果数组,当然也能返回两个数组(modf函数),但是这种的不是很常见;   (1)abs fabs  import numpy as np #导入模块 a = np.mat(np.arange(...arr1 = np.mat([1,8,2,9]) arr2 = np.mat([6,3,5,4]) np.maximum(arr1,arr2)  matrix([[6, 8, 5, 9]]) 返回的是两个数组中对应位大的数值...np.minimum(arr1,arr2) matrix([[1, 3, 2, 4]]) 返回的是两个数组中对应位小的数值  (3)greater 大于 ,greater_equal 大于等于  得到的是布尔矩阵或则数组...四、numpy中已有的通用函数  有四种:   1…add.accumulate()  递归作用于输入的数组,将运算的中间结果返回 axis决定方向  a = np.arange(9) #准备一个数组

    1.2K20

    python3存储numpy格式的矩阵

    技术背景 numpy在python中的地位是相当高的,即使是入门的python使用者也会经常看到这个库的使用。...除了替代python自带的列表数据格式list之外,numpy的一大优势是其底层的高性能实现方式,比如前一篇博客中所提到的矢量运算,就是一种基于SIMD的底层运算优化方案,使得numpy的计算速度远高于一个普通的...以下用ipython来展示npy文件的基本使用方法,首先是创建一个数组,然后用np.save保存到一个给定的文件名中: [dechin@dechin-manjaro numpy]$ ipython Python...) In [13]: print (np.load('normal_arr.npy')) [1 3 5 7 9] 甚至还可以保存一些非列表格式的数据,比如python中的tuple,但是保存后重新加载的数据格式...总结概要 在科学计算中对于恒定不变的数据,不一定需要实时保存在内存中,或者是需要跨平台运算的数据,我们可以将其保存为numpy格式的列表文件npy或者npz。

    1.2K20

    Python矩阵和Numpy数组的那些事儿

    今天给大家介绍矩阵和NumPy数组。 一、什么是矩阵? 使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。 二、Python矩阵 1....列表视为矩阵 Python没有矩阵的内置类型。但是,可以将列表的列表视为矩阵。 例: A = [[1, 4, 5], [-5, 8, 9]] 可以将此列表的列表视为具有2行3列的矩阵。...让看看如何使用NumPy数组完成相同的任务。 两种矩阵的加法 使用+运算符将两个NumPy矩阵的对应元素相加。...六、总结 本文基于Python基础,介绍了矩阵和NumPy数组,重点介绍了NumPy数组,如何去安装NumPy模块,如何去创建一个NumPy数组的两种方式。...添加小助手的每一个人都可以领取一份Python学习资料,更重要的是方便联系。 注意事项:一定要留意微信消息,如果你是幸运儿就尽快在小程序中填写收货地址、书籍信息。

    2.4K20

    python meshgrid_numpy的生成网格矩阵 meshgrid()

    numpy模块中的meshgrid函数用来生成网格矩阵,最简单的网格矩阵为二维矩阵 meshgrid函数可以接受 x1, x2,…, xn 等 n 个一维向量,生成 N-D 矩阵。...… [转]numpy中的matrix矩阵处理 今天看文档发现numpy并不推荐使用matrix类型.主要是因为array才是numpy的标准类型,并且基本上各种函数都有队array...这个转载还是先放着 … numpy中的matrix矩阵处理 numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,...均在matrix对象中. class numpy.matr … 【348】通过 Numpy 创建各式各样的矩阵 参考:NumPy之array-一个程序媛的自我修养-51CTO博客 参考:numpy中数组和矩阵的区别...((4,5)) print c.shape print numpy.random.random((2,3)) numpy模块之创建矩阵、矩阵运算 本文参考给妹子讲python https://zhuanlan.zhihu.com

    1.3K20

    python中矩阵的转置_Python中的矩阵转置

    大家好,又见面了,我是你们的朋友全栈君。 Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换....有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别....Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速....在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为...list, 所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表). import itertools print map(list, itertools.izip

    3.5K10

    Python中的numpy模块

    numpy模块创建的列表(实际上是一个ndarray对象)中的所有元素将会是同一种变量类型的元素,所以即使创建了一个规模非常大的矩阵,也只会对变量类型声明一次,大大的节约内存空间。 2. 内置函数。...值得注意的是,这类矩阵在内存中的存储方式是按行存储,意思是每一行的内存位置是相邻的,而Matlab与Fortran中的矩阵是按列存储的,因此在Python中按行遍历的运行速度比按列遍历的运行速度要快(至于快多少与矩阵大小和实际情况有关...在Matlab中也有与之相对应的索引方式,最明显的差异有三个:一是numpy矩阵对象的索引使用的是[],而Matlab使用的是();二是在逐个索引方面,numpy矩阵对象的索引通过负整数对矩阵进行倒序索引...当我们将视图进行改变,系统会根据其内存位置将储存的值进行改变,即会把最原始的矩阵对象改变。如果我们想要避免这个错误,需要在相应的地方使用.copy()方法,在本节最后我们将介绍视图的一个例子。...---- 附录 Part1:视图 视图是Python语法中的一个基础规则,它不仅仅适用于numpy模块,还适用于数值对象,列表对象,字典对象。

    1.8K41

    python的中的numpy入门

    Python中的NumPy入门在Python中,NumPy是一个强大的数值计算库。它提供了高性能的多维数组对象和各种计算函数,是进行科学计算和数据分析的重要工具。...本文将介绍NumPy的基本概念以及如何使用它进行数组操作和数学运算。1. 安装NumPy要使用NumPy,首先需要在Python环境中安装它。可以使用pip包管理工具进行安装。...导入NumPy在Python中,使用​​import​​语句导入NumPy库:pythonCopy codeimport numpy as np一般约定的做法是将NumPy库命名为​​np​​,以便在代码中使用时更加方便...数组索引和切片NumPy允许使用索引和切片来访问数组元素,与Python的列表类似。...NumPy的缺点大量内存占用:NumPy数组在内存中是连续存储的,这意味着数组的大小必须在创建之前就确定。当处理大规模数据集时,NumPy数组可能会占用相当大的内存空间。

    39620

    python中NumPy的矢量运算

    本文链接:https://blog.csdn.net/weixin_44580977/article/details/101981194 接下来了解下矢量运算的能力, 矢量的特性可以理解为并行化的运算..., 也就是说在对数组执行复杂计算时会作用到元素级别, 这样仅仅用简洁的表达式就可以代替Python的for循环。...我们先使用NumPy的random.normalvariate()生成一个平均收盘股价为10元(即期望为10),振幅为1元(即标准差为1),样本数量为1000的正态分布随机数组,如下所示: stock_data...9.27 11.2 9.4 9.83 8.99] """ 还有其他方法 np.roll()为循环右移 第一个值需要设置为无效值np.nan np.roll(stock_data,1) NumPy...中的ndarray类,可以更加简洁的进行 矢量算术运算,并且在处理多维的大规模数组时快速且节省空间。

    95740
    领券