Machine Learning Mastery 机器学习算法教程 机器学习算法之旅 利用隔离森林和核密度估计的异常检测 机器学习中的装袋和随机森林集成算法 从零开始实现机器学习算法的好处 更好的朴素贝叶斯:从朴素贝叶斯算法中收益最大的 12 个技巧 机器学习的提升和 AdaBoost 选择机器学习算法:Microsoft Azure 的经验教训 机器学习的分类和回归树 什么是机器学习中的混淆矩阵 如何使用 Python 从零开始创建算法测试工具 通过创建机器学习算法的目标列表来获得控制权 机器学习中算法
随着机器学习技术的迅速发展,Python已成为了机器学习领域最受欢迎的编程语言之一。Python以其简单易用、灵活性和丰富的生态系统等优势,在机器学习领域得到了广泛应用。
https://machine-learning-course.readthedocs.io/en/latest/
当涉及到训练计算机的行为而不需要明确的编程,存在大量的机器学习领域的工具。学术和工业界专业人士使用这些工具来构建从语音识别到MRI扫描中的癌症检测的许多应用。许多这些工具可以在网上免费获得。如果你有兴趣,我已经编译了这些(见本页底部)的排名,以及区分它们中一些重要功能的概述。具体来说,该工具所用的语言、每个工具的主页网站上的描述、对机器学习中特定范式的关注以及学术界和工业界的一些主要用途。
Machine Learning Mastery 计算机视觉教程 通道在前和通道在后图像格式的温和介绍 深度学习在计算机视觉中的 9 个应用 为 CNN 准备和扩充图像数据的最佳实践 8 本计算机视觉入门书籍 卷积层在深度学习神经网络中是如何工作的? DeepLearningAI 卷积神经网络课程(复习) 如何在 Keras 中配置图像数据扩充 如何从零开始为 CIFAR-10 照片分类开发 CNN 用于 Fashion-MNIST 服装分类的深度学习 CNN 如何为 MNIST 手写数字分类开发 CNN
最近梳理了下历史文章,精选了一些文章,分为机器学习,深度学习,人工智能等几大板块,文章已开通【快捷转载】,欢迎阅读及转载。
基于大数据的人工智能如今异常火爆 Python 作为最热门的编程语言之一 是实现机器学习算法的首选语言 Python与机器学习这一话题非常的宽广 5本书虽很难覆盖全面,但仍值得细细研读 NO.1 《机器学习——Python实践》 魏贞原 著 本书系统地讲解了机器学习的基本知识,以及在实际项目中使用机器学习的基本步骤和方法;详细地介绍了在进行数据处理、分析时怎样选择合适的算法,以及建立模型并优化等方法,通过不同的例子展示了机器学习在具体项目中的应用和实践经验,是一本非常好的机器学习入门和实践的书籍。 不同
在 上次的送书活动 中,营长做了个调查问卷,结果显示大家更喜欢深度学习、Python以及TensorFlow方面的书,所以这期送书活动一并满足大家。本期图书选自人民邮电出版社图书,包括:近期AI圈儿比较流行的一本书《人工智能简史》,《TensorFlow机器学习项目实战》,高实战性的《Python机器学习经典实例》,深度学习领域的圣经“花书”,经典的《机器学习实战》,广受欢迎的《流畅的Python》,东京大学教授、机器学习专业专家杉山将执笔《图解机器学习》。另外,可在文末投票,选出下期你希望营长能够送的
前言 “这就是阅读。即将新软件安装到大脑里的过程。” 就我个人而言,我从视频和在线教程中所学到的始终没有从书本中学到的多。 了解机器学习和数据科学很容易。目前有许多开放课程,你可以马上就开始学习。但是,获得更深入的学习需要额外的努力。例如:你可能会很快了解随机森林如何运作,但了解其背后的逻辑需要额外的努力。 质疑的信心来自于阅读。有些人很容易接受现状。另一方面,一些好奇的人则会反思“为什么不能这样做呢?”就是在这种情况下,人们开始尝试用新的方式完成任务。几乎每个我在美国管理协会(AMA)遇到的数据科学家,都
万事开头难,首先Python机器学习整个流程的第一步就是学习Python这门编程语言的相关基础知识。
Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源。你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了。本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:http://suo.im/KUWgl 和 http://suo.im/96wD3。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。 「开始
机器学习是一种编程,它使计算机能够在没有显式编程的情况下自动地从数据中学习。换句话说,这意味着这些程序通过学习数据来改变它们的行为。
机器学习是实现人工智能的一种途径,它和数据开掘有一定的相似性,也是一门多领域交叉学科,触及概率论、核算学、逼近论、凸剖析、核算复杂性理论等多门学科。对比于数据开掘从大数据之间找互相特性而言,机器学习愈加注重算法的设计,让核算机可以白动地从数据中“学习”规则,并利用规则对不知道数据进行猜测。因为学习算法触及了很多的核算学理论,与核算揣度联络尤为严密。
过去的几年中,Python 已成为机器学习和深度学习的首选编程语言。与机器学习和深度学习相关的大多数书籍和在线课程要么只用 Python,要么再带上 R 语言。Python 有着丰富的机器学习和深度学习库、专门优化的实现,具备可伸缩性和大量功能,因而广受欢迎。
NO.1 人工智能科普类:人工智能科普、人工智能哲学 《智能的本质》斯坦福、伯克利客座教授 30 年 AI 研究巅峰之作 《科学 + 遇见人工智能》李开复、张亚勤、张首晟等 20 余位科学家与投资人共
机器学习是个跨领域的学科,而且在实际应用中有巨大作用,但是没有一本书能让你成为机器学习的专家。 在这篇文章中,我挑选了 10 本书,这些书有不同的风格,主题也不尽相同,出版时间也不一样。因此,无论你是
【新智元导读】2016 年就要过去了,关于机器学习的知识储备你觉得自己做得如何?下面是 Analytics Vidhya 网站发表的文章,汇集了 2016 年机器学习经典视频、教材和课程,分类整理,初学者、进阶级还是资深研究员,都可以从中发现适合的材料。视频只做了展示截图,观看的话请复制文中的链接哦。 目录 第一部分:机器学习入门 怎样在 6 个月内成为数据科学家 CMU统计机器学习课程 滑铁卢大学机器学习课程 Python 应用机器学习课程 导论:Python 数据科学 SciPy 机器学习导论课 Py
机器学习在很多眼里就是香饽饽,因为机器学习相关的岗位在当前市场待遇不错,但同时机器学习在很多人面前又是一座大山,因为发现它太难学了。在这里我分享下我个人入门机器学习的经历,希望能对大家能有所帮助。
你可能在各种应用中听说过机器学习machinelearning(ML),比如垃圾邮件过滤、光学字符识别(OCR)和计算机视觉。
导读:随着人工智能技术的发展与普及,Python超越了许多其他编程语言,成为了机器学习领域中最热门最常用的编程语言之一。有许多原因致使Python在众多开发者中如此受追捧,其中之一便是其拥有大量的与机器学习相关的开源框架以及工具库。
机器学习是个跨领域的学科,而且在实际应用中有巨大作用,但是没有一本书能让你成为机器学习的专家。
导读:下面是 Analytics Vidhya 网站发表的文章,汇集了 2016 年机器学习经典视频、教材和课程,分类整理,初学者、进阶级还是资深研究员,都可以从中发现适合的材料。视频只做了展示截图,观看的话请复制文中的链接哦。 目录 第一部分:机器学习入门 怎样在 6 个月内成为数据科学家 CMU统计机器学习课程 滑铁卢大学机器学习课程 Python 应用机器学习课程 导论:Python 数据科学 SciPy 机器学习导论课 Python Pandas 数据分析 CS50 机器学习课程 Pandas 初
01 引言 欢迎关注 算法channel ! 交流思想,分享知识,找到迈入机器学习大门的系统学习方法,并在这条道路上不断攀登,这是小编创办本公众号的初衷。 本公众号会系统地推送基础算法及机器学习/深度学习相关的全栈内容,包括但不限于:经典算法,LeetCode题目分析,机器学习数据预处理,算法原理,例子解析,部分重要算法的不调包源码实现(现已整理到Github上),并且带有实战分析,包括使用开源库和框架:Python, Numpy,Pandas,Matplotlib,Sklearn,Tensorflow等
近年来,人工智能和机器学习成为了科技发展的热门话题。其中,Python作为一种简洁、易学且功能强大的编程语言,被广泛应用于人工智能和机器学习领域。随着技术的不断进步和应用场景的不断拓展,Python在这些领域的应用也将继续发挥重要作用。
人工智能、机器学习和深度学习,已成为能够给我们工作、生活和思维带来变革的认知和科技。 面对海量数据,利用人工智能、机器学习和深度学习创造价值是一件既有挑战又有意义的事情。 本文探讨如何学习和应用机器学
我们很多人都没有注意到,其实 YouTube 上面有大量免费的机器学习的指导课程。你无须再等待 MOOC 课程的更新了,可以在 YouTube 上面找到你想要的。去年,我们在 Top YouTube Videos 里面推荐了大量神经网络、深度学习和机器学习方面的优秀视频,但是很多视频已经有些过时了,所以这里我们需要更新一下视频推荐。 (备注:请自备梯子科学上网观看) 本文可以帮助你发现新的工具、技术、方法等。你要牢记这句话:对新知识的学习要像生命对于活水的需求一样迫切,永远不要停下追赶新知识、新观点的脚步。
这篇文章旨在通过7个步骤,将最少的机器学习知识转化为知识型实践者,所有这一切都在使用免费的材料和资源。这个大纲的主要目标是帮助你通过许多可用的免费选项; 有很多,可以肯定的,但哪些是最好的?哪个互补?使用所选资源的最佳顺序是什么? 首先,我假设你并不是以下方面的专家: 机器学习 Python 任何 Python 的机器学习、科学计算或数据分析库 如果你对前两个主题有一定程度的基本了解就更好了,不了解也没有关系,提前花一点点时间了解一下就行了。 第一步:基本 Python 技能 如果你打算利用 Python
Python生态系统正在不断成长,并可能成为机器学习的统治平台。
2017 年末,PSF(Python Software Foundation,Python 软件基金会)和 JetBrains 一起进行了一次全球范围内的关于 Python 使用情况的问卷调查,共有来自 153 个国家的 9506 名开发者参与了这次调查,官方也发布了一份调查报告分析。
编者注:澳大利亚机器学习专家、畅销书作者 Jason Brownlee,对机器学习领域的各类优质书籍进行了盘点,汇总成这份阅读指南。在 AI 研习社所筛选的学习资源中,这堪称是迄今为止最全面、最完整、权威性比较高的一份 ML 书单,涵盖了最值得学习者、从业者、开发者认真研读的精品书目。这份指南适合多样背景的读者:从想要了解机器学习的普通人,到入门新手,再到高阶开发者和学术研究人员。因此,AI 研习社对其进行编译整理,特来与大家分享。 友情提醒:该指南只考虑了英文市场的机器学习图书,适合大家作为国际市场高品
本文介绍了GitHub上最流行的20个Python机器学习项目,包括scikit-learn、Pylearn2、NuPIC等,并分析了这些项目的特点和贡献。
有很多文章比较了Python和R在数据科学方面的相对优点。但是这并不在这篇文章的讨论范围。这篇文章是关于数据分析师和机器学习工程师的分歧,以及他们对编程语言的不同需求。
"启程"往往是最具挑战性的一步,特别是在面临众多选择时,人们往往难以做出决策。本教程旨在帮助那些几乎没有Python机器学习基础的初学者成长为知识丰富的实践者,而且整个过程都可以利用免费的资源来完成。本教程的主要目标是引导你了解众多可用资源,并帮助你筛选出最佳的学习资源。资源众多,但哪些是最有价值的?哪些资源能够相互补充?以及如何安排学习顺序才能达到最佳效果?首先,我们假设你目前对以下领域并不精通:
分享一篇来自机器之心的文章。关于机器学习的起步,讲的还是很清楚的。原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源。你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了。本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和 su
机器学习技术类书单推荐,共11本: 《机器学习》 《图解机器学习》 《机器学习实战》【有电子版】 《机器学习系统设计》【有电子版】 《Python机器学习基础教程》【有电子版】 《Python机器学习
Python作为一种通用、易学易用的编程语言,在数据科学领域得到了广泛的应用。随着机器学习的兴起,Python成为了数据分析和建模的首选工具之一。本文将详细介绍Python数据分析中的机器学习基础知识,并讨论其在实际项目中的应用。无论您是初学者还是有一定经验的数据科学家,掌握这些技能都是进行数据分析的必备。
《科学+遇见人工智能》李开复、张亚勤、张首晟等20余位科学家与投资人共同解读AI革命
本文转自网络,如涉侵权请及时联系我们 人工智能相关岗位中,涉及到的内容包含: 算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉
算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉度量、图像识别、语音识别、推荐系统、系统算法、图像算法、数据分析、概率编程、计算机数学、数据仓库、建模等关键词,基本涵盖了现阶段人工智能细分领域的人才结构。
这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。
摘要: 开源是技术创新和快速发展的核心。这篇文章向你展示Python机器学习开源项目以及在分析过程中发现的非常有趣的见解和趋势。 我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目。让我们一起在Github上探索这些流行的项目! Scikit-learn:Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随
选自kdnuggets 作者:Matthew Mayo 机器之心编译 参与:黄小天、吴攀、晏奇、蒋思源 Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源。你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了。本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:http://suo.im/KUWgl 和 http://suo.im
一个人的成长分为两大部分,身体与思维。而饮食和学习正是让人身体成长、思维进步的必经之路。在科技领域,随着计算能力、算法和数据的相辅相成,机器学习逐渐成长。机器通过吃掉海量的多维度的数据,根据这些数据特征判断并做出决策。机器读数据就像人读书一样,让自己增长阅历以及变得更智慧。
在之前的案例使用网络爬虫自动抓取图书信息中,我们通过简单的爬虫抓取了当当网的机器学习相关的图书数据,并保存为 ./input/books_total.csv 文件。通过爬虫采集原始数据,但是由于各种原因,原始数据往往会存在许多问题,例如数据格式不正确,数据存在冗余等等。因此第一手获得的原始数据不能直接使用,需要进行数据清洗。本案例基于爬取的书籍数据进行数据清洗,使其称为符合我们要求的数据。
本文探讨了Go语言在机器学习领域的应用挑战,以及其未来的发展前景。Go语言作为一种强大高效的编程语言,具有优越的性能和并发性能,适合构建大规模应用程序。然而,在机器学习领域,Go仍然面临一些挑战,如缺乏高级库、没有CUDA的原生绑定以及实验约束等。虽然Go的机器学习生态系统相对较小,但一些高级库如Gonum、Gorgonia和GoLearn为Go提供了一些机器学习功能。未来,将Go视为机器学习模型服务的语言可能是更为合适的选择,同时,Go社区的持续发展和创新也将为机器学习领域带来更多的机会和解决方案。
机器学习是一种允许计算机使用现有数据预测未来行为、结果和趋势的数据科学方法。 使用机器学习,计算机可以在未显式编程的情况下进行学习。机器学习的预测可以使得应用和设备更智能。 在线购物时,机器学习基于历史购买推荐你可能喜欢的其他产品。 刷信用卡时,机器学习将事务与事务数据库进行比较,帮助检测欺诈行为。当机器人吸尘器清理房间时,机器学习帮助其决定工作是否完成。
导语:Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源。你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了。另外,小编在这里邀请大家加入到我们,小编Tom邀请你一起搞事情! 「开始」往往是最难的,尤其是当选择太多的时候,一个人往往很难下定决定做出选择。本教程的目的是帮助几乎没有 Python 机器学习背景的新手成长为知识渊博的实践者,而且这个
导语:Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源。你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了。本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:http://suo.im/KUWgl 和 http://suo.im/96wD3。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。另
领取专属 10元无门槛券
手把手带您无忧上云