首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python算法——二叉树遍历

    Python中的二叉树遍历算法详解 二叉树是一种常见的树状数据结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。遍历二叉树是访问树的所有节点并按照特定顺序输出它们的过程。...在本文中,我们将讨论二叉树的三种主要遍历算法:前序遍历、中序遍历和后序遍历,并提供相应的Python代码实现。 1....以下是前序遍历的Python实现: class TreeNode: def __init__(self, value): self.val = value self.left...以下是中序遍历的Python实现: def inorder_traversal(root): if root is not None: inorder_traversal(root.left...以下是后序遍历的Python实现: def postorder_traversal(root): if root is not None: postorder_traversal(root.left

    85010

    树的遍历--树的广度遍历(层次遍历),深度遍历(前序遍历,中序遍历,后序遍历的递归和非递归实现)

    spring-jpa,webjars,Aspect,drools-drt,rabbitmq,zookeeper,mongodb,mysql存储过程,前端的延迟加载,netty,postgresql 这次就来整合下 树的遍历...前序遍历,中序遍历,后序遍历的区别就是根在前(根左右),根在中(左根右),根在后(左右根) 在最后补全所有源码 二 广度优先遍历 层次遍历 //广度优先遍历 层次遍历 public...public BinaryTree() { root = new TreeNode(1, "rootNode(A)"); } /** * 创建一棵二叉树...new TreeNode(9, "X"); } public boolean isEmpty() { return root == null; } //树的高度...} private int height(TreeNode subTree) { if (subTree == null) { //递归结束:空树高度为

    5.5K40

    树的遍历总结

    树的遍历 递归无返回值遍历 先序: public void preOrder(TreeNode root){ if (root == null){ return;...注意所有的遍历走过了路径都是相同的,只是输出(操作)的延迟问题,也可以在依靠树遍历的回溯完成操作,递归操作是对当前节点的不同状态下不同情况的考虑,不需要考虑上下父子关系 判断是不是二茬排序树 // 使用包装类可以传入数值为...二叉树的遍历都是可以用栈来进行模拟,因为递归就是在jvm中内部栈进行操作 public List inorderTraversal(TreeNode root) {...任然属于大问题,转小问题的子类优化问题 实际上构建二叉树只需要前序遍历或者中序遍历就可以 那么另一颗,只用于查找子树的大小 public TreeNode buildTree(int[] preorder...// 可以先写好计算树高度的算法,然后后序遍历,在最后在计算左右子树的高度是否合法 // 相当于从先序的计算平衡二叉树 public boolean isBalanced(TreeNode root

    1.9K30

    非递归遍历树

    先序非递归遍历二叉树,中序非递归遍历二叉树,后序非递归遍历二叉树及双栈法。...先序非递归遍历二叉树 先序非递归遍历比较简单,感觉与DFS类似,根据先序遍历的规则根左右,先将根节点压入栈,然后遍历左子树,再遍历左子树的左子树,一头走到NULL,把每次遍历的左子树的根节点依次入栈并把当前结点数据打印出来.../测试样例 //输入前三行 //9 //1 2 4 7 3 5 8 9 6 //先序 //4 7 2 1 8 5 9 3 6 // 中序 //7 4 2 8 9 5 6 3 1 // 后序 中序非递归遍历二叉树...,此时当前结点为最左叶节点的根节点,然后遍历右节点,以此类推最后栈为空,遍历完毕。...n;++i) { scanf("%d",&b[i]); } Tree = Creat(a,b,n); travel_in(Tree); } return 0; } 后序非递归遍历二叉树及双栈法

    1.2K10

    树, 树的遍历, 树的数据结构

    ,我们可以用 c 语言简单写一个小如何表示.struct Tree{ int value; Tree *left; Tree *right;}*tree;二叉树的遍历二叉树遍历分为层序遍历和深度遍历...,对应就是深度搜索和广度搜索,其中深度搜索有包含前序遍历后序遍历和中序遍历,就是遍历根节点的顺序不同,这里只写一个前序遍历.show me the code前序遍历void frontedSearch(...\n ", node->value); frontedSearch(node->left); frontedSearch(node->right);}代码较为简单就是两个递归的事情.层序遍历层序遍历需要使用队列...= NULL){ q.push(q1->right); } }}树的变形树的数据结构中除了二叉树,还有很多其他的树,以及在一些开发过程中我们希望使用的往往是具有某些特性的树...,从而使得树发挥最大的作用.二叉查找树二叉查找树是一种特定的二叉树,一棵树节点的左子树小于节点,右节点是大于当前节点的值.二叉查找树基本操作也就是那种增删查之类的.show me the code<!

    30700

    前序遍历和中序遍历树构造二叉树

    题意 根据前序遍历和中序遍历树构造二叉树. 注意事项: 你可以假设树中不存在相同数值的节点 样例 给出中序遍历:[1,2,3]和前序遍历:[2,1,3]....返回如下的树: 2 / \ 1 3 思路 根据前序遍历和中序遍历的规律可得: 前序遍历的第一个就是整个树的根节点 这个根节点在中序遍历的左侧是其左子树,右侧是右子树。...将每一个节点都看作是一个单独的树,根据此 规律1 和 规律2 依次递归获取其左右子树的前序与中序遍历,直到前序遍历或中序遍历的长度仅剩1,则说明该节点为叶子节点,从而构造整棵树。...]; //右侧子节点的前序遍历 //从现有的中序遍历中拿到 左右子节点的中序遍历 for (int i = 0; i < inorder.length; i++) { if...treeRoot.right = buildTree(child_PreorderRight,child_InorderRight); return treeRoot; } } 原题地址 LintCode:前序遍历和中序遍历树构造二叉树

    2K40
    领券