首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据模型与Python对象模型

数据模型==对象模型 Python官方文档说法是“Python数据模型”,大多数Python书籍作者说法是“Python对象模型”,它们是一个意思,表示“计算机编程语言中对象的属性”。...这句话有点抽象,只要知道对象是Python对数据的抽象,在Python中万物皆对象就可以了。 官方文档严谨说法,Python程序中的所有数据都是用对象或对象之间的关系来表示的。...很多人会误以为Python是弱类型语言,其实Python是强类型语言,这个误解的真实原因是,Python不需要编译,不需要提前知道变量的类型,在运行时才检查类型,这应该叫做动态语言。...小结 Python数据模型就是常说的对象模型,万物皆对象,有编号、类型、值三个要素。了解了对象模型后,Python另一个重要概念即将浮出水面,它就是数据结构。...参考资料: 《流畅的Python》 https://docs.python.org/3/reference/datamodel.html

60810

python | 内存模型

每一个编程语言的背后都有自己独特的内存模型支持,比如最经典的C语言,一个int类型占8字节。那么在python中不区分数据类型,定义一个变量其在内存在占用多少字节呢?...python中数据的运算其内存是如何变化的呢? 在回答上面的问题之前,首先看一下python中可变的数据和不可变数据。...一、可变对象和不可变对象 Python一切数据皆为对象,python中的对象分成两类:可变对象和不可变对象。所谓可变对象是指,对象的内容可变,而不可变对象是指对象内容不可变。...python对于数据的特殊处理 小整数 Python为了优化速度,避免为整数频繁申请和销毁内存空间,使用了小整数对象池。...python为了避免创建大整数浪费的内存空间和时间,将创建过的大整数加入大整数池。 python中大整数池,默认大整数池里面为空,每一个py程序都有一个大整数池。

33610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】Pytorch模型转NCNN模型

    前言最近用Real-ESRGAN的时候遇到了个问题,别人预训练的模型都是Pytorch的.pth格式的模型,但NCNN打包的ESRGAN只能使用.param和.bin的NCNN模型,有没有办法转换chaiNNer...(英语不好,四级擦边过),从源代码手动下载Python,然后解压到软件内的python目录,重命名为python但是这个Python是作为摆设的,因为我电脑有Python了,而且装有CUDA的torch...,如果没有或者怕冲突的话建议还是继续使用我们刚刚复制的python作为虚拟环境。...此时进入就不会提示安装Python了,因为我们只做模型转换,ffmpeg的功能暂时用不上,他也会下载ffmpeg,就只能耐心等了,报错不用理,一样能够进入软件安装依赖使用内嵌Python点这里打开需要下载...Convert to NCNN,连起来最后保存为NCNN模型(Save Model,选择NCNN里面的)第一步选择.pth的模型,最后一步设置保存的目录和名称最后点击上面的运行,很快就转换完成了

    17810

    Python 3 线程模型,进程模型记录

    最近需要使用 python3 多线程处理大型数据,顺道探究了一下,python3 的线程模型的情况,下面进行简要记录; 多线程运行的优点: 使用线程可以把程序中占用时间较长的任务放到后台去处理; 用户界面可以更加吸引人...python 的多线程 threading 有时候并不是特别理想....这个东西让 Python 还是一次性只能处理一个东西: 尽管Python完全支持多线程编程, 但是解释器的C语言实现部分在完全并行执行时并不是线程安全的。...GIL最大的问题就是Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行); 如果要进行利用python的多进程形式,可以使用python...的 multiprocessing 编程模型包; GIL只会影响到那些严重依赖CPU的程序(比如计算型的)。

    68320

    python分类模型_nlp模型评估指标

    ---- 必看前言 不知道你是否已经看完了我之前讲过的有关机器学习的文章,如果没看过也没关系,因为本篇文章介绍的内容适用于所有分类模型(包括神经网络),主要就是介绍分类模型的评估指标。...如果我们希望捕获少数类,模型就会失败。 其次,模型评估指标会失去意义。...2 混淆矩阵 从上面内容可以看出,如果我们的目标是希望尽量捕获少数类,那准确率这个模型评估逐渐失效,所以我们需要新的模型评估指标来帮助我们。...如果一个模型在能够尽量捕获少数类的情况下,还能够尽量对多数类判断正确,则这个模型就非常优秀了。为了评估这样的能力,我们将引入新的模型评估指标:混淆矩阵来帮助我们。...结束语 到这里,有关于监督学习的分类模型就讲完啦。后面我会结合实战再同大家分享,而且也会介绍回归模型和一些无监督学习的算法,感兴趣的可以点击下方专栏进行关注。

    85710

    Python 数据模型

    一、如何理解数据模型? 最近我在阅读一本专门讲述 Python 语言特性的书(本文部分内容来自 Fluent Python 这本书),书中提到了数据模型这个词,数据模型是不是我们经常说的数据类型?...其实不是,数据模型是对 Python 框架的描述,他规范了自身构建模块的接口,这些接口我们可以理解为是 Python 中的特殊方法,例如 __iter__、__len__、__del__ 等。...当你进一步的理解这种不适感背后的强大之处的时候,你会被 Python 的设计哲学所折服,这正是建立在 Python 数据模型之上的结果,Python 数据模型的 API ,为我们使用地道的 Python...四、数据模型与特殊方法 数据模型描述的是对象协议,而特殊方法正是内置对象的所实现的协议,为了让我们的代码风格表现的和内置类型一样,或者说更 Python 风格的代码,我们可以使用特殊方法,而不是子类化。...Python 中的特殊方法还有很多,这里主要讲述的还是数据模型,希望大家可以理解 Python 语言的设计哲学,以及思考如何写出更 Pythonic 的代码。

    90520

    Python之IO模型

    IO模型介绍 为了更好地了解IO模型,我们需要事先回顾下:同步、异步、阻塞、非阻塞     同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞...总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。...该模型的优点: #相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。...如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。  该模型的缺点: #首先select()接口并不是实现“事件驱动”的最好选择。...#其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。

    985110

    python 数据模型

    本文的代码例子: https://github.com/ccc013/CodesNotes/blob/master/FluentPython/1_Python%E6%95%B0%E6%8D%AE%E6%...A8%A1%E5%9E%8B.ipynb 前言 数据模型其实是对 Python 框架的描述,它规范了这门语言自身构建模块的接口,这些模块包括但不限于序列、迭代器、函数、类和上下文管理器。...通常在不同框架下写程序,都需要花时间来实现那些会被框架调用的方法,python 当然也包含这些方法,当 python 解释器碰到特殊的句法的时候,会使用特殊方法来激活一些基本的对象操作,这种特殊方法,也叫做魔术方法...块) 一摞 Python 风格的纸牌 接下来尝试自定义一个类,并实现两个特殊方法:__getitem__ 和 __len__ ,看看实现它们后,可以对自定义的类示例实现哪些操作。...对于特殊方法的调用,这里还要补充说明几点: 特殊方法的存在是为了被 Python 解释器调用的。我们不需要调用它们,即不需要这么写 my_object.

    99320

    使用Python实现深度学习模型:Transformer模型

    Transformer模型自提出以来,已经成为深度学习领域,尤其是自然语言处理(NLP)中的一种革命性模型。...在本文中,我们将详细介绍Transformer模型的基本原理,并使用Python和TensorFlow/Keras实现一个简单的Transformer模型。 1....Transformer模型简介 Transformer模型由编码器(Encoder)和解码器(Decoder)组成,每个编码器和解码器层都由多头自注意力机制和前馈神经网络(Feed-Forward Neural...使用Python和TensorFlow/Keras实现Transformer模型 下面我们将使用Python和TensorFlow/Keras实现一个简单的Transformer模型,用于机器翻译任务。...总结 在本文中,我们详细介绍了Transformer模型的基本原理,并使用Python和TensorFlow/Keras实现了一个简单的Transformer模型。

    52011

    python-Django 模型层-模型层简介

    在Django中,ORM的核心是模型层(Model Layer),它允许开发人员使用Python代码来定义数据库模型,并通过该模型进行数据操作。...模型层的基本概念在Django中,每个模型对应一个数据库表。模型可以用Python代码来定义,它们继承自Django提供的Model类。模型中的属性对应表中的字段,属性的类型决定了字段的类型。...模型中的方法可以用于查询、插入、更新和删除数据。模型类通常定义在应用程序的models.py文件中。...一个简单的模型定义如下:from django.db import modelsclass Article(models.Model): title = models.CharField(max_length...模型层的使用方法Django的ORM使得对数据库的操作变得非常简单和易于维护。通过模型层,我们可以进行数据查询、插入、更新和删除等操作。

    43740

    推荐算法|FM模型python

    导读:上篇文章推荐算法|FM模型原理简介中我们介绍了FM模型原理,本次我们通过python进行实例展示。为了提升模型性能,本次代码同步引入加入L2正则及Adagrad。...Adagrad 梯度下降中有学习率参数,合适的学习率会影响模型训练效率及准确性。Adagrad的核心思想就是随着迭代次数增加,让学习率变小。加入后,参数的迭代变为: ? 其中 ?...2 代码逻辑 本例中我们通过梯度下降来训练一个二分类FM模型。 对于二分类问题,我们取logit作为损失函数: ? 我们的目标就是使得上述损失函数最小的最优化问题。...在FM模型中,参数的梯度为: ? 其中 ? 根据Adagrad更新学习率,就得到最终计算方法。整个过程伪代码如下: ? 3 python实现 此处仅展示核心代码,获得完整代码方法在文末。

    1K50
    领券