:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 实现对Dataframe的遍历 Part 1:目标 pandas功能很强大,我们可以使用pandas直接读取数据库获取一个Df,也可以直接读取Excel获取一个...Df,等等 那么对于生成的Df想获取其中每一个元素怎么实现呢?...本文就是实现对Df的遍历循环,获取每一行每一列的内容 结果如图 ?...(df_1)print("\n") for index, row in df_1.iterrows(): print(index) print(row["time"]) print(row
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 计算Dataframe某一列的和、均值、最大值、最小值、样本标准方差 Part 1:背景 ?..._1 = pd.DataFrame(dict_1, columns=["time", "pos", "value1", "value2"]) print(df_1, "\n") # 单列计算 # 求和...求单列的和df_1["value1"].sum(),基本格式df[列名].计算函数() 和:sum 均值:mean 最大值:max 最小值:min 样本标准方差:std,注意是样本标准方差,对应(n-1...),不是总体标准方差 Ps:根据pos列可以将value1进行分组,那么对应每一组的计算值又如何实现?
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块...22, 33, 44, 55, 66], "value2": [1, 2, 3, 4, 5, 6], "value3": [1, 2, 3, 4, 5, 6]} df...= pd.DataFrame(dict_1, columns=["time", "pos", "value1", "value2", "value3"])df_2 = df.pivot(index="...pos", columns='time', values='value1')print(df)print("\n")print(df_2) 代码截图 ?...如果调换行列df_3 = df.pivot(index="time", columns='pos', values='value1'),结果如下图 结合上一章节,是不是可以快速算出每一个pos的各种统计值
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块..."] 以pos列作为连接,将两个Df合并成一个Df,效果如下图 合并 ?..._2")print(df_2) df_merge_1 = pd.merge(df_1, df_2, how='left', on='pos')print("\ndf_merge_1")print(df_merge..._1) df_merge_2 = pd.merge(df_2, df_1, how='left', on='pos')print("\ndf_merge_2")print(df_merge_2) 代码截图...Part 3:部分代码解读 pd.merge(df_1, df_2, how='left', on='pos'),以pos列作为df_1和df_2的关联列,采用左连接的方式 左连接,可以简单理解为行采用左边的
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 生成一个空的df Part 1:场景描述 一些情况下需要对df进行操作,若这个df是中间计算出来,有可能是空字符串,这样后续的很多运算就会报错 其中的一个方法就是给其赋值一个空的...df Part 2:代码1 import pandas as pd df = pd.DataFrame(columns=['A', 'B', 'C', 'D']) print(df) if df.empty...: print("为空的df") print(type(df)) 代码截图 执行结果 Part 3:代码2 import pandas as pd df = pd.DataFrame...() print(df) if df.empty: print("为空的df") print(type(df)) 运行结果 Part 4:部分代码解读 代码1中设置了列名,对于一个空的
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何讲一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 Part 2: 代码 import pandas as pd list_1 = [{"a": 1, "b":...= pd.DataFrame(list_1) print("\ndf内容:") print(df.head(5)) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame...(list_1),核心就是将该列表传给pd.DataFrame 观察执行结果,规律: 列表中的每一个元素是一个字典 每个字典的键是一样的,转换后对应df的列名 生成的df行索引采用自然数 本文为原创作品
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 对不同df进行按行或者按列的拼接 Part 1:场景描述 ?...# df = pd.concat([df_1, df_2, df_3]) # print("\n", "df = pd.concat([df_1, df_2, df_3])", "\n", df, "\...n") df = pd.concat([df_1, df_2, df_3], axis=1) print("\n", "df = pd.concat([df_1, df_2, df_3], axis=...= pd.concat([df_1, df_2, df_3]), 按行方向进行拼接 列索引名相同时,写在同一列 列索引名不同时,写在不同列,缺值部分用Nan表示 df = pd.concat([df_
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算版块 今天讲讲pandas模块:根据条件对Df进行筛选 Part 1:示例 已知df_1,有3列["value1", "value2", "value3"], 不同筛选条件下,获取新的df 筛选条件...df_2 ? df_3 ? df_4 ? df_5 ?..._2 = df_1[(df_1["value2"] > 0.6) & (df_1["value3"] < 5)] print(df_2) print("\n满足任一条件") df_3 = df_1[(...df_4 = df_1[(df_1["value2"] > 0.6) & (df_1["value1"].isin(list_1))] print(df_4) print("\n满足任一条件") list
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何将一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 上一篇文章列表内每个元素是一个字典,那么如果列表内的元素也是一个列表如何处理呢?...[2, 3, 4, 5], [6, 3, 8, 5]] print("\n列表内容:") print(list_1) list_column = ["列a", "列b", "列c", "列d"] df...df = pd.DataFrame(list_1, columns=list_column),因为列表本身没有列名的信息,所以单独传了一个列名列表
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块...今天讲讲pandas模块: 获取DataFrame部分行 Part 1:示例 已知一个DataFrame,想获取其中满足条件的行 从结果中可以知道,只保留了df中的前3行数据 执行结果 ?...[5, 5, 3, 3, 2], "down_tol": [-5, -5, -3, -3, 2]} list_1 = ["pos_1", "pos_2", "pos_3"] df...("\n只取需要的数据:") df_2 = df[df["quality_1"].isin(list_1)] print(df_2) 代码截图 ?...Part 3:部分代码解读 df_2 = df[df["quality_1"].isin(list_1)]从代码中可以看出,是以quality_1列作为筛选条件的,取quality_1列值为["pos_
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 抽取Df中两列构成一个字典 Part 1:场景描述 已知df1,包括6列,"time", "pos", "value1", "value2", "value3", "value4...抽取其中的pos和value1列构成一个字典 由df生成字典 Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "..._1", "\n", df_1, "\n") dict_map = df_1.groupby('pos')['value1'].apply(list).to_dict() print(dict_map...同样的数据源两种方式差别如下 dict_map = df_1.groupby(‘pos’)[‘value1’].apply(set).to_dict() dict_map = df_1.groupby
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 从Dataframe获取特定的行或者列数据,生成一个列表 Part 1:目标 ?...获取第0行数据 Df ?...= df_1.T print(df_2) list5 = df_2[0].tolist() print(list5) print(type(list5)) 代码截图 ?..."].tolist(),格式:df[列名].tolist() 输出行,本文中其实还是采用输出列的方式,即先将原来的df_1转置再输出列信息,df_2 = df_1.T
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 将Df输出到Excel文件中,以及读取Excel中数据 Part 1:场景介绍 ?..._2 = os.path.join(current_address, excel_name_2) df_2 = df_1.head(3) df_2.to_excel(excel_address_2)...输出Excel: df_1.to_excel(excel_address),通过to_excel函数即可,若只是看一下数据结构,可以只输出Df的一部分,df_2 = df_1.head(3)即表示df_...本文为原创作品,欢迎分享朋友圈 长按图片识别二维码,关注本公众号 Python 优雅 帅气
Windows 10 语言版本:conda 4.4.10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:0.22.0 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 按照时间列,得出每行属于上中下旬,进而对df进行分组 Part 1:场景描述 ?..., "下旬")) print("\n") print(df) df_1 = df[df["xun"] == "上旬"] print("\n") print(df_1) df_1 = df[df["xun..."中旬", np.where(df["flag"] <= 10, "上旬", "下旬")),两重判断 np.where(条件,满足条件结果,不满足条件结果) 支持嵌套,有点VBA公式的感觉 对flag列的每个元素进行计算...df_1 = df[df["xun"] == "上旬"]获取上旬数据 ? 本文为原创作品,欢迎分享朋友圈 长按图片识别二维码,关注本公众号 Python 优雅 帅气
import pandas as pd import numpy as np df = pd.DataFrame([[1, 2, 3], [np.nan, np.nan..., 2], [np.nan, np.nan, np.nan], [8, 8, np.nan]]) df df.fillna..., 1:11, 2:22}) 有人问, 列中以为有了nan, 所以每列都成了float类型的, 使用0, 1, 2的键对应的值应该是无法替换数值0.0, 1.0, 2.0的 其实上面代码中的键并不是df
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 判断数据是否为DataFrame,或为Series Part 1:背景 当我们使用Df的一些方法时,首先得明确该变量的数据类型是DataFrame,否则有可能会报错..._1 = pd.DataFrame(dict_1, columns=["time", "pos", "value1"]) print("\n", "df_1", "\n", df_1, "\n") print...(type(df_1)) if isinstance(df_1, pd.DataFrame): print("df_1 is DataFrame") else: print("df_1...is not DataFrame") if isinstance(df_1, pd.Series): print("df_1 is series") else: print("df
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...,如下示例 Df ?...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?...字典的键为列名,值为一个列表,该列表对应df的一个列 dict_fields = df_1.to_dict(orient='list') print(dict_fields) ? list对应结果 ?
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲Python...的科学计算版块 今天讲讲pandas模块: 对列的每一个元素进行同样的字符串操作 今天讲其中的1个操作: split Part 1:目标 已知Df某列都是字符串,每一个字符串都有一个文件与其对应,需要对原文件名称进行修改...2) print("\n") df_3 = df_1["file_name"].str.split("...se_1 print("加入新的文件名:\n", df_1) print(type(df_1)) 代码截图 执行结果 Part 3:部分代码解读 df_2 = df_1["file_name"]..._2["文件名"] + "." + df_3["文件类型"],实现两个Df之间对应每个元素的字符串连接操作,生成一个Series对象 df_1["new_file_name"] = se_1,df_1新增一列
样例数据 df = pd.DataFrame({‘X’: [1, 2, 7, 5, 10], ‘Y’: [4, 3, 8, 2, 9]}) df[‘X’] [[]] df[[‘X’]]...df[‘X’]更像是pd.series类型的,而df[[“X”]]是pd.Dateframe类型,事实也的确如此。...type(df[‘X’]) type(df[[‘X’]]) 除此之外,df[[‘X’,‘Y’]]这样的写法也是被支持的,而df[‘X’,‘Y’]则不被允许。...df[[‘X’,‘Y’]]
in的存在使得python在操作可迭代对象时变得简单得多,用于配合for使用逐个取可迭代对象的元素。...Python中提供生成器函数和生成器表达式两种方式实现生成器,每次请求返回一个结果,不需要一次性构建一个结果列表,节省了内存空间。...2018-02-02 3463.2 3388.9 3419.2 3462.1 208100 3462.1 3473.4 -1.0 矢量化遍历方式 此处我们主要处理一维数组之间的计算...Pandas包括了非常丰富的矢量化函数库,我们可把整个series(列)作为参数传递,对整个链表进行计算。...我们可使用values 方法将链表从Pandas series转换为NumPy arrays,把NumPy array作为参数传递,对整个链表进行计算。
领取专属 10元无门槛券
手把手带您无忧上云