学习
实践
活动
专区
工具
TVP
写文章

PyTorch实现TPU版本CNN模型

为了克服训练时间的问题,我们使用TPU运行时环境来加速训练。为此,PyTorch一直在通过提供最先进的硬件加速器来支持机器学习的实现。 本文演示了如何使用PyTorchTPU实现深度学习模型,以加快训练过程。 在这里,我们使用PyTorch定义了一个卷积神经网络(CNN)模型,并在PyTorch/XLA环境中对该模型进行了训练。 XLA将CNN模型与分布式多处理环境中的Google Cloud TPU(张量处理单元)连接起来。在这个实现中,使用8个TPU核心来创建一个多处理环境。 用PyTorchTPU实现CNN 我们将在Google Colab中实现执行,因为它提供免费的云TPU(张量处理单元)。 启用TPU后,我们将安装兼容的控制盘和依赖项,以使用以下代码设置XLA环境。 VERSION = "20200516" !

65710

TPU上运行PyTorch的技巧总结

但是Kaggle和谷歌在它的一些比赛中分发了免费的TPU时间,并且一个人不会简单地改变他最喜欢的框架,所以这是一个关于我在GCP上用TPU训练PyTorch模型的经验的备忘录(大部分是成功的)。 ? https://github.com/pytorch/xla 设置 这里有两种方法可以获得TPU使用权 GCP计算引擎虚拟机与预构建的PyTorch/XLA映像并按照PyTorch/XLA github 或者使用最简单的方法,使用google的colab笔记本可以获得免费的tpu使用。 针对一kaggle的比赛您可以在虚拟机上使用以下代码复制Kaggle API令牌并使用它下载竞争数据。 注意,在TPU节点上也有运行的软件版本。它必须匹配您在VM上使用的conda环境。由于PyTorch/XLA目前正在积极开发中,我使用最新的TPU版本: ? 使用TPU训练 让我们看看代码。 对于多核训练,PyTorch/XLA使用它自己的并行类。

94710
  • 广告
    关闭

    新年·上云精选

    热卖云产品新年特惠,2核2G轻量应用服务器9元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TPU使用说明

    他们还创建了一项 TPU 资源,其 Compute Engine 实例和 TPU 资源的累计使用时间都是 10 小时。 $45.00 _ $45.95 使用抢占式 TPU 的价格示例 在以下示例中,使用的资源和时长与上例相同,但这一次该研究机构决定使用抢占式 TPU 来节省成本。 使用TensorFlow的相应版本创建Cloud TPU,并将Cloud TPU的名称作为环境变量( TPU _ NAME )传递给Computer Engine VM。 TPU 该方法可以免费使用TPU,但是磁盘空间有限,最多50G,而且默认已使用24G, 所以对于要训练大数据集或者要保存模型的可能还是得使用Google Cloud。 Colab使用方法很简单,只需要使用自己的谷歌账号在Colab上新建一个Jupyter-notebook,在创建好之后将修改>笔记本设置>硬件加速器设置成TPU即可使用

    1.1K00

    TPU使用说明

    1.2 实用查询链接 Compute Engine 价格表 Compute Engine 价格计算器 1.3 价格计算实例 以下示例解释了如何计算一项训练作业的总费用,该作业使用美国区域的 TPU 资源和 他们还创建了一项 TPU 资源,其 Compute Engine 实例和 TPU 资源的累计使用时间都是 10 小时。 $45.00 _ $45.95 使用抢占式 TPU 的价格示例 在以下示例中,使用的资源和时长与上例相同,但这一次该研究机构决定使用抢占式 TPU 来节省成本。 注意:要想使用Cloud Storage,需要启用结算功能。 2.2.1 创建存储分区 存储分区用于保存您要在 Cloud Storage中存储的对象(任何类型的文件)。 使用TensorFlow的相应版本创建Cloud TPU,并将Cloud TPU的名称作为环境变量( TPU _ NAME )传递给Computer Engine VM。

    62130

    TPU使用说明

    1.2 实用查询链接 Compute Engine 价格表 Compute Engine 价格计算器 1.3 价格计算实例 以下示例解释了如何计算一项训练作业的总费用,该作业使用美国区域的 TPU 资源和 他们还创建了一项 TPU 资源,其 Compute Engine 实例和 TPU 资源的累计使用时间都是 10 小时。 $45.00 _ $45.95 使用抢占式 TPU 的价格示例 在以下示例中,使用的资源和时长与上例相同,但这一次该研究机构决定使用抢占式 TPU 来节省成本。 2.3 打开Cloud Shell,使用ctpu工具 Shell在控制台右上角,如下图示: ? 输入ctpu print-config可以查看配置信息。 使用TensorFlow的相应版本创建Cloud TPU,并将Cloud TPU的名称作为环境变量( TPU _ NAME )传递给Computer Engine VM。

    70320

    PyTorch中基于TPU的FastAI多类图像分类

    在本文中,我们将演示最流行的计算机视觉应用之一-多类图像分类问题,使用fastAI库和TPU作为硬件加速器。TPU,即张量处理单元,可以加速深度学习模型的训练过程。 ? 「本文涉及的主题」: 多类图像分类 常用的图像分类模型 使用TPU并在PyTorch中实现 多类图像分类 我们使用图像分类来识别图像中的对象,并且可以用于检测品牌logo、对对象进行分类等。 要在Google Colab中使用TPU,我们需要打开edit选项,然后打开notebook设置,并将硬件加速器更改为TPU。 ? 通过运行下面的代码片段,你可以检查你的Notebook是否正在使用TPU。 原文链接:https://analyticsindiamag.com/fastai-with-tpu-in-pytorch-for-multiclass-image-classification/

    35630

    Bye Bye TPU,4个GPU就能训练“史上最强”BigGAN!作者开源完整PyTorch模型

    就仿佛DeepMind团队训练BigGAN用的512个TPU,齐刷刷发出不怀好意的嘲笑。 ? 现在, 好消息来了! 虽然“只需”令人嫉妒,但比起原来动辄128个、512个TPU的硬件需求,简直就扶贫济困,平民之光。 原版是128-512个TPU,新版是4-8个GPU,这之间有巨大的算力差距,Brock到底是怎样用Pytorch完整复现BigGAN的? 大思路就是:靠梯度累加,在小硬件上使用大批量(batch)。 不过,评论区也有高人,为新实现找了个绝佳的使用场景: 那些之前买显卡挖矿的人,终于有比较酷的事情可干了。 这一提议顿时有人响应: 哈……我有12块英伟达1080,就是因为这个。 △ BigGAN一作Andrew Brock 他使用PyTorch体验怎样?如何看待在PyTorch和TensorFlow中实现BigGAN的差异?

    50120

    一行代码安装,TPU也能运行PyTorch,修改少量代码即可快速移植

    晓查 发自 凹非寺 量子位 报道 | 公众号 QbitAI 对于PyTorch开发者来说,Google Colab上的TPU资源不能用,恐怕是最遗憾的事情了。 过去一直有PyTorch用户试图在Colab上薅羊毛,但是都没有太成功的。 现在福利来了,一个叫做Pytorch Lightning的项目,可以让你几乎修改代码的情况下用上TPU。 ? 使用方法 PyTorch Lightning具体该如何使用,作者Falcon还是以MNIST图像分类网络为例,介绍从收集数据到训练再到验证、测试的全过程。 ? 二者代码大致相同,只是将PyTorch代码组织为4个函数: prepare_data:此函数负责处理下载数据,确保使用多个GPU时,不会下载多个数据集或对数据进行双重操作。 PyTorch Lightning还有更多的可扩展性,在这里无法一一介绍,如果你正想要在TPU上运行自己的PyTorch代码,可以前去学习更详细的用法。

    1.1K40

    灵魂三问 TPU

    扯了这么多,本帖只想弄清楚下面 WHAT-WHY-HOW 灵魂三问: WHAT:TPU 是什么? WHY:为什么 TPU 在神经网络上有效? HOW:怎么玩 TPU + Keras? 最后看看专门为矩阵计算设计的 TPU? 1.4 TPU TPU 是 google 专门为大型神经网络里面的大型矩阵运算而设计的,因此不是通用处理器。 基于此,Google 自定义了一个 16 位大脑浮点 (bfloat16),并发现许多模型在使用 bfloat16 时,实现了与使用 float32 数值时相同的准确性。 ? try block 里面分别检测出 TPU,并创建 TPU 分布式策略,然后用 keras_to_tpu_model 来将 model 装成 tpu_model。 之后就可以愉快的训练模型了。 另外 Google 真是一家伟大的公司,在 Colab 里面可以免费使用 TPU 玩模型。大家也可以去试试吧。

    1.2K20

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • TI-ONE 训练平台

      TI-ONE 训练平台

      智能钛机器学习平台是为 AI 工程师打造的一站式机器学习服务平台,为用户提供从数据预处理、模型构建、模型训练、模型评估到模型服务的全流程开发支持。智能钛机器学习平台内置丰富的算法组件,支持多种算法框架,满足多种AI应用场景的需求。自动化建模(AutoML)的支持与拖拽式任务流设计让 AI 初学者也能轻松上手。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券