现在写文件很多网站都不让复制了,所以每次都是截图然后发到QQ上然后用手机QQ的文字识别再发回电脑。感觉有点小麻烦了,所以想自己写一个小软件方便方便自己,就有了这篇了:
直播视频回放:https://v.qq.com/x/page/i3135lgkagd.html
我们在日常工作过程中,经常会遇到文字识别的场景,一款好用的 OCR 工具也是非常重要的,能帮助我们极大的提高工作效率。
朋友小君是一家创业公司老板,最近这段时间总是抱怨自己公司每天要处理的文件又多又杂,员工工作效率因此被拖慢了不少。
本文主要介绍了如何在社区中实现图片分类和情感识别,以及如何对图像进行特征提取和选择合适的模型来加速训练和识别过程。作者通过对比多种方案,包括使用传统的CNN和RNN模型,以及使用更先进的模型如VGG和ResNet,最终选择使用Dense CNN模型来实现图片分类和情感识别任务。同时,作者还分享了在训练过程中使用的一些技术和方法,包括数据扩增、模型选择和超参数调优等,以提升模型的性能和效率。
本文为52CV粉丝mileistone投稿,介绍了一篇最新OCR方向的论文,大胆直接使用图像多分类进行文本识别。
文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号。光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。
当然,这两种方法都可行,但是不够简单方便。手动输入太慢,语音识别又有点麻烦,如果普通话不好,识别很可能会出错。
港澳台通行证识别、火车票识别、出租车发票识别、机票行程单识别、定额发票识别、购车发票识别,详细内容见接口文档(https://cloud.tencent.com/document/product/866/33515)。开通和调用方式请参考快速接入指引(https://cloud.tencent.com/document/product/866/34681);
在科学研究中,从方法论上来讲,都应先见森林,再见树木。当前,人工智能科技迅猛发展,万木争荣,更应系统梳理脉络。为此,我们特别精选国内外优秀的综述论文,开辟“综述”专栏,敬请关注。
业务端大量的新增数据来自纸质报告、电子邮件、文档、图像、视频等非结构化内容。据统计,业务线对于80%的非结构化内容无法有效管理,60%的管理人员在决策时无法获得关键信息,50%的信息内容无法为公司带来业务价值。
由于深度学习和海量数据的涌现,场景文字识别技术获得飞速发展。但是先前同类方法存在种种缺点,为此,本文提出 TextScanner,一种鲁棒的基于分割的场景文字识别方法,可以正确读取字符数据,并在一系列相关的文字基准数据集上,取得了当前最佳的性能。本文是旷视研究院与华中科技大学的联合研究成果,已收录于 AAAI 2020。
在最新一期的 AAAI 2020 线上论文分享中,旷视研究院算法研究员万昭祎结合被接收的两篇论文,向我们介绍了旷视提出的高性能实时文字检测算法和更鲁棒的文字识别框架。
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。比如汉
Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师。每周都会举行嘉宾分享,话题讨论等活动。 本期,我们邀请了 腾讯 TEG 技术工程师“文亚飞”,为大家分享《深度学习在OCR中的应用》。 下面是分享实录整理: ---- 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作。OCR(光学字符识别)旨在从图片中检测和识别文字信息,本次分享将介绍我们在OCR技术研发过程中的一些方法和经验总结。 一,OCR背景及基本框架介绍 OCR技术从上世纪60年代就开
我们经常会用手机拍摄、截屏了一大堆图片,领导的PPT、客户的名片、各种文案海报等等…… 想着有空后把资料整理成文字稿,但是一想到要在电脑上把文字打出来,巨大的工作量让我们望而却步,最终不了了之。 有没有一种工具可以很顺利的将纸质版的文字变成电子版的文字呢? 答案肯定是有的,给大家推荐下面这 5 种方法,图片和表格都能秒转文字,分分钟帮你提高工作效率~~ 01 传图识字 1)打开微信,点击下方「发现」选项,选取「小程序」。 2)点击「搜索」,输入“传图识字”,或者“图片文字识别”,或者“扫描大师” 3
前言 文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分 本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。OCR技术是实现文字高速录入的一项关键技术。 在OCR技术中,印刷体文字识别是开展最早,技术
腾讯云—腾讯倾力打造的云计算品牌,以卓越科技能力助力各行各业数字化转型,为全球客户提供领先的云计算、大数据、人工智能服务,以及定制化行业解决方案。具体包括云服务器、云存储、云数据库和弹性web引擎等基础云服务;腾讯云分析(MTA)、腾讯云推送(信鸽)等腾讯整体大数据能力;以及 QQ互联、QQ空间、微云、微社区等云端链接社交体系。
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。
先说说我为什么要写这篇文章,在这之前,我遇到了一个问题,就是复制不了PDF的文字内容,而我偏偏又想获取到。 我尝试了很多办法,先是将PDF转成Word文档,这样就可以从文档中把内容复制出来了,但是这些格式转换的工具基本都收费,自然就不用再考虑了。 我还想过将要复制的文字部分截图下来,然后发到手机上,通过手机QQ的提取文字内容功能将文字提取出来然后复制:
袁秋龙,携程度假大数据AI研发团队实习生,专注于计算机视觉的研究和应用。在实习期间致力于度假图像智能化工作,OCR问题为实习期主要做的研究。
平时,我们参加一个会议,拍下了关键图片,想搜索相关的文献,却要一个一个字母输入搜索;看一个视频,觉得里面的台词很好,想记录下来,看视频一个一个字母码出来?;网上搜索一些文档,不能下载,却想引用这些资料里面的文字,却碰到复制权限的限制(不给复制),那怎么办?;看一篇文献,有一些单词看不懂,也要一个一个码出来搜索,翻译?
模块设计:我们使用统一框架和模块化设计实现了各个算法模块。一方面可以尽量实现代码复用,另外一方面,方便大家基于此框架实现新的算法。我们把文字检测,基于分割的文字识别以及关键信息识别网络结构,抽象成 backbone,neck,head 以及 loss 模块,把 seq2seq 文字识别网络抽象成 backbone,encoder,decoder 以及 loss 模块。
现阶段,手机扫描正越来越多地进入到人们的生活中。随着扫描应用场景的不断拓宽,诸多细节的问题逐渐显露,比如使用者在拍照扫描文档时,手指不小心“入镜”了,只能重拍;拍电脑屏幕时,画面上有一些彩色条纹,既不美观也影响内容识别;拍完照片后发现文档很杂乱,扫描时需要手动叠加好几种图片处理方案,才能获得理想的效果……这些“糟心事”,如今被一个滤镜轻松解决了。
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献
传统的方法将文字检测和文字识别分为两个分开的部分,即输入一张图,先进行文字检测,检测出文字的位置,再进行文字识别,即对检测出的文字抠出来并送入识别网络。这样一方面比较费时间,第二没有共享检测和识别的特征。
在当今数字化时代,文字识别技术(OCR)已成为我们日常生活和工作中的重要工具。 OCR可以将图像或纸质文件中的文字转化为可编辑和可搜索的数字格式,为我们提供了便捷和高效的方式来处理大量的文本信息。
在机器学习和计算机视觉领域,光学字符识别(optical character recognition, OCR)长期以来都是人们研究的重要主题之一。OCR 很简单,就是将文档照片或场景照片转换为机器编码的文本。
如果谈到这几年手机上各平台最常见的引流福利,必然是答题赢大奖系列小游戏了。像什么头号英雄,百万玩家之类的,充斥在我们生活中,同时也成为了我们生活中常见的娱乐方式。
自然场景下的文字检测与识别是近年来的热点研究方向之一,也是很多计算机视觉技术实现应用时的重要步骤。相较于技术已经相对成熟的打印文档文字识别,自然场景中的文本识别仍具困难,比如文字的呈现可以有多种方向、多样的颜色和字体等,这些情况都为文字检测与识别技术在现实生活中的应用带来了挑战。
在当今数字化时代,OCR(Optical Character Recognition)识别技术正发挥着越来越重要的作用。OCR技术通过将图像中的文字转化为可编辑的文本形式,实现了对大量纸质文档的数字化处理和信息提取。常见的有企业资质证书的识别到身份证、护照等各类证件的自动识别等方面,OCR技术正在为各行各业无纸化办公起到了非常重要的作用。
最近有读者问我平时是怎么记录视频笔记的,因为陌溪之前一直沉迷于B站视频学习,在很多热门的视频下都留下我写的视频学习笔记,也成功帮助小伙伴们节省了很多时间,这次陌溪把压箱底的记笔记操作分享给大家。
在本文中,我们用自然图像中包含的文字创建了一个大型数据集,名为Chinese Text in the Wild(CTW)。该数据集包含32,285张带有1,018,402个中文字符的图像,远远超出了之前的数据集,这些图片来自腾讯街景,从中国数十个不同的城市获取,没有任何特殊目的。由于其多样性和复杂性,该数据库存在极大的挑战性。它包含平面文本,凸起文本,城市文本,农村文本,低亮度文本,远处文本,部分遮挡文本等。对于每个图像,我们注释其所有中文。对每一个中文字符,我们注释它的底层字符,边界框和6个属性,以指示它是否被遮挡,复杂背景,扭曲,3D文字,艺术字和手写体。
随着人工智能的热度上升,图像识别这一细分领域也渐渐被人们所关注。在很多公司的业务中,有很多需要对图片进行识别的需求。为了帮助业务实现对这些图片、文档的识别和结构化,业界进行了一系列的实践和探索,最终确定了一些可行的方法。实践过程中,可能遇到过一系列问题和难点。本次直播分享,我们将结合目前的业务需求,说说爱奇艺在探索中遇到的痛点和难点以及识别技术中的一些细节。
从古至今,文字经历了数代变革,最终发展成为现在的简体字。近来以来,随着科技的发展,人类变得越来越“懒”,从抛弃纸笔投入电脑的怀抱,再到现在从键盘到语音的转移。虽然不管如何发展,文字依然是人们不可丢弃的东西,但是出于让生活更便利的目的,它也在随着科技而发生变化,比如担当着人工智能基础之一的文字识别技术(OCR)。 OCR是指光学设备(扫描仪、数码相机等)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程,其本质就是利用光学设备去捕获图像并识别文字,将人眼的能力延
今天跟大家分享一篇昨天新出的场景文本识别方法MASTER,其发明了一种Multi-Aspect 全局上下文建模方法,有效改进了文本识别精度,在多个数据集上取得了目前最好的精度,是最近最值得读的文本识别方面的论文。
AI 科技评论按:随着深度学习的兴起和发展,计算机视觉领域发生了极大的变化。作为计算机视觉中一个重要的研究课题,场景文字检测和识别也无法避免地被这股浪潮席卷,一起进入了深度学习的时代。近年来,这个问题的研究者们都共同见证了思维、方法和性能方面的巨大变化,本次公开课的嘉宾将与大家分享相关内容。
本文主要介绍PaddleOCR v2.6的新特征与C++编译推理详细步骤演示。(公众号:OpenCV与AI深度学习)
在人机交互方面,大多人想到的都是语音交互,毕竟这是人类之间运用率最高的交流方式,且语音识别、自然语言理解等技术目前也发展的相当不错。 但是,我们也不得不忽视这样一个事实:我们每天都被文字所包围,像每天
9.20 - 9.25,作为全球OCR领域标杆性盛会,第15届国际文档分析与识别大会(ICDAR 2019)在澳大利亚悉尼召开,同时也揭晓了本年度ICDAR竞赛的结果并为冠军团队颁发获奖证书。 腾讯数平图像团队(Tencent-DPPR Team)依靠领先的文字检测与识别技术能力,在本次竞赛的三个大项比赛中(MLT19,LSVT,ReCTS, 共10个子任务)获得了7项第一,2项第二的优异成绩,并受邀在会议上做技术报告分享。这也是团队自2017年获得4项OCR冠军之后,
导语:在刚刚结束的第15届国际文档分析与识别大会(澳大利亚悉尼)上,腾讯数据平台部(下称“数平”)团队获颁7项冠军证书,并受邀在会议上做技术分享。 9.20 - 9.25,作为全球OCR领域标杆性盛会,第15届国际文档分析与识别大会(ICDAR 2019)在澳大利亚悉尼召开,同时也揭晓了本年度ICDAR竞赛的结果并为冠军团队颁发获奖证书。 腾讯数平图像团队(Tencent-DPPR Team)依靠领先的文字检测与识别技术能力,在本次竞赛的三个大项比赛中(MLT19,LSVT,ReCTS, 共10个
学校里的课程作为父母插不上手,那辅导孩子写作业就非常关键了。跟让孩子主动写作业比起来,辅导家庭作业以及批阅检查孩子的作业才是让很多家长头疼的事情。一题一题的,虽然简单,但也需要花费不少的时间。
最近接了一个新需求,需要获取一些信用黑名单数据,但是找了很多数据源,都是同样的几张图片,目测是excel表格的截图,就像下面这样:
如果是我们的视频,代码都是公开的,搜索下就可以找到。(比如上图中的代码在本次推文头条就可以找到文字版)
在日常生活中,我们经常会需要将图片里的文字信息提取出来使用,通过人工方式采集的录入方式十分机械且效率低下。其实可以通过OCR技术,将印刷体、手写体的图片进行扫描即可将文字识别并录入系统中。市面上也存在较多OCR识别应用,但不一定能够适用于我们。
最近遇到一个项目需求,需要进行拍照,并且识别图片中的文字,其实该项目也可以改成其他图像识别,比如人脸识别、图像分类等。
这是一篇论文简记,原文出自SCUT电信学院金连文老师组。 概要 文本历史可以追溯到数千年前。在广泛视觉应用场景中,文本所携带的丰富语义信息非常重要。故自然场景文本识别已经成为计算机视觉和模式识别的活跃
在日常办公或者学习中,往往存在这样一个工作场景,比如,“老王,我这里有一张图片,你把里面的文字信息给我整理出来”,都2021年了,你真的还在手敲图片文字信息么?那么还不赶紧收藏这篇秘籍,这里本渣渣总结了三种方法,教你如何将图片上的文字信息提取出来,图片转成文字信息的方法。
领取专属 10元无门槛券
手把手带您无忧上云