学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    618夏日盛惠

    2核2G云服务器首年95元,GPU云服务器低至9.93元/天,还有更多云产品低至0.1折…

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    斯坦福NLP课程 | 第12讲 - NLP子词模型

    仍然广泛应用于2018年WMT https://github.com/rsennrich/nematus 3.3 Wordpiece / Sentencepiece模型 [Wordpiece / Sentencepiece 模型] 谷歌 NMT (GNMT) 使用了它的一个变体 V1: wordpiece model V2: sentencepiece model 不使用字符的 n-gram count,而是使用贪心近似来最大化语言模型的对数似然函数值 ,选择对应的 pieces 添加最大限度地减少困惑的 n-gram [Wordpiece / Sentencepiece模型] Wordpiece模型标记内部单词 Sentencepiece模型使用原始文本 空格被保留为特殊标记(_),并正常分组 可以通过将片段连接起来并将它们重新编码到空格中,从而在末尾将内容反转 https://github.com/google/sentencepiece https ://arxiv.org/pdf/1804.10959.pdf [Wordpiece / Sentencepiece模型] BERT 使用了 wordpiece 模型的一个变体 (相对) 在词汇表中的常用词

    24531

    如何在双十一给自己送个“陪聊女友”——基于飞桨&Plato搭建多轮对话模型

    package文件夹中存放了其自带的试验数据的词集,语句切分模型(spm.model, 即sentencepiece model,这个模型用在语句的预处理上,必须给定),以及模型的细节参数(词集大小,隐含层个数 在Knover的源码中,对输入的处理是通过了sentencepiece工具(BERT也使用的这个)。 sentencepiece提供了一种方便快捷的分词操作,我们可以直接将整个数据集放进去,设定分词的单元数量,然后等待训练出一个好用的分词模型(会输出一个预训练模型,之后对每个语句都会用这个模型进行编码和解码 Knover中训练必须输入的参数spm_model,就是对应sentencepiece的预训练模型。 用sentencepiece模型的例子如下: import sentencepiece as sp import jieba text = "我今天做了一顿丰盛的晚餐!"

    81730

    扫码关注腾讯云开发者

    领取腾讯云代金券