首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习遇见生物学:详解蛋白质折叠预测中的算法

这时问题也就提出来了,即所谓的「蛋白质折叠问题」——预测这些链(一级结构)是如何折叠成复杂的 3D 结构的。...现有数据中的宝藏 既然要引入机器学习,首先要确定的问题就是该用什么机器学习技术呢。如果要对这个问题进行监督学习,就需要标签。在这个问题中,我们就需要标记蛋白质中每个原子的三维坐标。...图 3 就是一个简单的匹配例子(这里的 A, T(或 U), C, G 是指核酸,蛋白质匹配的情况更加复杂,后面会讲)。这个例子中,我们可以用点(.)来代表少量的不匹配,用破折号(-)表示缺失值。...如下图所示,在 BERT 训练时,先遮住部分单词,然后通过其他单词来预测这个被挡住的单词。这样我们就可以得到一个关于可能成为的单词的分布,然后通过交叉熵损失来训练这个模型。...然后预测蛋白质骨架的折叠角度,根据蛋白质骨架的折叠角度,把结构切割成一系列有重叠的 9 个氨基酸残基为单位的短肽,分别预测,再组装到一起,预测整个结构域的结构。最后,把折叠好的结构组装到一起。

1.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法集锦(3)|采用医疗数据预测糖尿病的算法

    本文将介绍如何利用机器学习与医疗数据来预测个人患糖尿病的算法,在此过程中,我们还会学习如何进行数据准备、数据清洗、特征选择、模型选择盒模型计算。...经过综合分析,因为本例仅是为了验证算法的可行性,所以我们决定移除血压、BMI和血糖各特征中为0值的行。...训练/测试数据划分 K折叠交叉验证(K-Fold Cross Validation) 这里,我们将用“train_test_split”函数进行数据划分,“cross_val_score”函数进行K折叠交叉验证...K折叠交叉验证 对于个分类或回归问题,假设有多个可选的模型为。K-折叠交叉验证就是将训练集的1/k作为测试集,每个模型训练k次,测试k次,错误率为k次的平均,最终选择平均率最小的模型Mi。 ?...本例采用的是GridSearchCV方法,该方法通过交叉验证对参数空间进行求解,寻找最佳的参数。 首先,导入GridSearchCV方法。

    1.3K30

    图解机器学习中的 12 种交叉验证技术

    然后将每个折叠用作一次验证,而剩余的 个折叠形成训练集。...如下图所示,黑色部分为被用作的验证的一个折叠,而黄色部分为被用作训练的 个折叠。 另外数据分布图是5折交叉验证中每个验证数据集(黑色部分),及实际用作验证模型的数据集的组合分布图。...这个交叉验证对象是 KFold 的一种变体,它返回分层折叠。通过保留每个类别的样本百分比来进行折叠。...05 分层K折交叉验证--打乱的 对于每个目标,折叠包大约相同百分比的样本,但首先数据被打乱。...同一组不会出现在两个不同的折叠中(不同组的数量必须至少等于折叠的数量)。这些折叠是近似平衡的,因为每个折叠中不同组的数量是近似相同的。 可以从数据集的另一特定列(年)来定义组。

    2.7K20

    使用重采样评估Python中机器学习算法的性能

    数据的每个分割被称为折叠。该算法在k-1折叠上进行训练,其中一个保持在后面的折叠上进行测试。这是重复的,这样数据集的每一个折叠都有机会成为阻止测试集。...对于数千或数万个记录中的适度大小的数据集,3,5和10的k值是常见的。 在下面的例子中,我们使用10倍交叉验证。...您可以配置交叉验证,以便折叠的大小为1(k设置为数据集中观察值的数量)。...Accuracy: 76.823% (42.196%) 4.重复的随机测试 - 列车拆分 k折叠交叉验证的另一个变化是像上面描述的训练/测试分割那样创建数据的随机分割,但重复多次分割和评估算法的过程,如交叉验证...Accuracy: 76.496% (1.698%) 什么时候使用什么技术 一般说来,k-fold交叉验证是评估k值设置为3,5或10的未知数据的机器学习算法性能的黄金标准。

    3.4K121

    在Python中使用交叉验证进行SHAP解释

    简而言之,SHAP值通过计算每个特征的边际贡献来工作,方法是在许多带有该特征和不带该特征的模型的预测(每个观察)中查看这种贡献,权衡这些减少特征集模型中的贡献,然后将所有这些实例的加权贡献相加。...首先,我们现在需要考虑的不仅是每个折叠的SHAP值,还有每个重复的每个折叠的SHAP值,然后将它们合并到一个图中绘制。...字典在Python中是强大的工具,这就是我们将使用它来跟踪每个样本在每个折叠中的SHAP值的原因。 首先,我们决定要执行多少次交叉验证重复,并建立一个字典来存储每个样本在每次重复中的SHAP值。...我们看到了每个样本的每个交叉验证重复的范围(最大值减去最小值)。...嵌套交叉验证是我们应对这个问题的解决方案。它涉及采用我们正常的交叉验证方案中的每个训练折叠(这里称为“外循环”),通过在每个折叠的训练数据上使用另一个交叉验证(称为“内循环”)来优化超参数。

    27210

    评估Keras深度学习模型的性能

    使用自动验证数据集 Keras可将你的训练数据的一部分分成验证数据集,然后评估每个周期该验证数据集的性能。...折交叉验证 评估机器学习模型的黄金标准是k-折交叉验证(k-fold cross validation)。...最后将所有模型的性能评估平均。 交叉验证通常不用于评估深度学习模型,因为计算代价更大。例如k-折交叉验证通常使用5或10次折叠。因此,必须构建和评估5或10个模型,大大增加了模型的评估时间。...然而,当问题足够小或者如果你有足够的计算资源时,k-折交叉验证可以让你对模型性能的估计偏倚较少。...你学到了三种方法,你可以使用Python中的Keras库来评估深度学习模型的性能: 使用自动验证数据集。 使用手动验证数据集。 使用手动k-折交叉验证。

    2.2K80

    Python数据分析实验三:基于Scikit-Learn构建数据分析模型

    (五)改进模型学习的效果 思考:能否使用交叉验证改进模型学习的效果? 交叉验证是一种评估模型性能和泛化能力的有效方法,它可以帮助我们更好地理解模型在未见过数据上的表现。...下面是如何使用交叉验证改进线性回归模型的学习效果的步骤: 导入必要的库:首先,导入cross_val_score函数,它可以用于执行交叉验证并返回每个折叠的评分。...执行交叉验证:使用cross_val_score函数对模型进行交叉验证。你可以指定交叉验证的折叠数量(例如,5折交叉验证)。...评估性能:对于每个交叉验证折叠,计算评分(例如,R^2分数),并最终计算所有折叠的平均分数。...# 使用交叉验证改进模型学习的效果 import pandas as pd from sklearn.model_selection import KFold, cross_val_score from

    8310

    【机器学习】第六部分:模型评估

    根据混淆矩阵,查准率、召回率也可表示为: 查准率 = 主对角线上的值 / 该值所在列的和 召回率 = 主对角线上的值 / 该值所在行的和 ④ 实验 利用sklearn提供的朴素贝叶斯分类器分类,并打印查准率...交叉验证法 ① 什么是交叉验证 在样本数量较少的情况下,如果将样本划分为训练集、测试集,可能导致单个集合样本数量更少,可以采取交叉验证法来训练和测试模型....“交叉验证法”(cross validation)先将数据集D划分为k个大小相同(或相似)的、互不相交的子集,每个子集称为一个"折叠"(fold),每次训练,轮流使用其中的一个作为测试集、其它作为训练集...这样,就相当于获得了k组训练集、测试集,最终的预测结果为k个测试结果的平均值. ② 如何实现交叉验证 sklearn中,提供了cross_val_score函数来实现交叉验证并返回评估指标值: import...,# 样本输入、输出 cv, # 折叠数量 scoring) # 指定返回的指标 以下是关于朴素贝叶斯模型的交叉验证实现

    1.1K10

    解决Fit Failed Warning: Estimator fit failed. The score on this train-test partiti

    交叉验证通过反复划分数据集并进行模型训练和评估,以准确评估模型在不同数据集上的性能。 交叉验证的基本原理是将数据集划分成K个互斥的子集,被称为折叠。...常见的交叉验证方法有以下几种:K折交叉验证(K-fold Cross-validation):将数据集划分为K个折叠,每次使用其中K-1个折叠作为训练集,剩下的一个作为测试集。...留一交叉验证(Leave-One-Out Cross-validation):将每个样本作为一个折叠,执行N次模型训练和评估,其中N是数据集的样本数量。这种方法非常耗时,适用于样本数量较少的情况。...分层K折交叉验证(Stratified K-fold Cross-validation):在K折交叉验证的基础上,保持每个折叠中的类别分布与整个数据集中的类别分布相似,以避免类别不平衡造成的评估误差。...对于参数调优,我们可以在交叉验证过程中使用网格搜索等方法来搜索最佳参数组合。 在Python的​​scikit-learn​​库中,提供了方便的交叉验证功能。

    59010

    机器学习中的参数调整

    总第102篇 前言 我们知道每个模型都有很多参数是可以调节的,比如SVM中使用什么样的核函数以及C值的大小,决策树中树的深度等。...全部用上 iid:假设数据在每个cv(折叠)中是相同分布的,损失最小化是每个样本的总损失,而不是折叠中的平均损失。...refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。...cv:交叉验证折叠数,默认是3,当estimator是分类器时默认使用StratifiedKFold交叉方法,其他问题则默认使用KFold verbose:日志冗长度,int类型,0:不输出训练过程,1...(X):返回每个类别的概率值(有几类就返回几列值) predict(X):返回预测结果值(0/1) score(X, y=None):返回函数 get_params(deep=True):返回估计器的参数

    2.5K70

    如何在交叉验证中使用SHAP?

    简而言之,SHAP值通过计算每个特征的边际贡献来工作,方法是在许多有和没有该特征的模型中查看(每个观察值的)预测,根据每个这些减少特征集模型中的权重计算这种贡献,然后总结所有这些实例的加权贡献。...将交叉验证与SHAP值相结合 我们经常使用sklearn的cross_val_score或类似方法自动实现交叉验证。 但是这种方法的问题在于所有过程都在后台进行,我们无法访问每个fold中的数据。...在Python中,字典是强大的工具,这就是我们将用来跟踪每个样本在每个折叠中的SHAP值。 首先,我们决定要执行多少次交叉验证重复,并建立一个字典来存储每个重复中每个样本的SHAP值。...因此,虽然我们正在取平均值,但我们还将获得其他统计数据,例如最小值,最大值和标准偏差: 以上代码表示:对于原始数据框中的每个样本索引,从每个 SHAP 值列表(即每个交叉验证重复)中制作数据框。...嵌套交叉验证是我们的解决方案。它涉及在我们正常的交叉验证方案(这里称为“外循环”)中取出每个训练折叠,并使用训练数据中的另一个交叉验证(称为“内循环”)来优化超参数。

    20610

    Scikit-learn 秘籍 第五章 模型后处理

    第五章 模型后处理 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.0 5.1 K-fold 交叉验证 这个秘籍中,我们会创建交叉验证,它可能是最重要的模型后处理验证练习...我们会在这个秘籍中讨论 k-fold 交叉验证。有几种交叉验证的种类,每个都有不同的随机化模式。K-fold 可能是一种最熟知的随机化模式。...我们会查看如何使用 Sklearn 自带的交叉验证,但是我们也可以使用一个辅助函数,来自动化执行交叉验证。...5.3 使用 ShuffleSplit 交叉验证 ShuffleSplit是最简单的交叉验证技巧之一。这个交叉验证技巧只是将数据的样本用于指定的迭代数量。...k-fold 的每个折叠的比例,在每个折叠之间是稳定的。

    54000

    关于多目标任务有趣的融合方式

    如何通过融合解决多标签分类(MLC)问题.这里给了两个的方案: SST 与大多数机器学习模型一样,这里的目标是构造一个将输入映射到输出的函数,在这种情况下,输出将是一组向量.单一目标(ST)考虑m个单一模型来预测多标签...此外,还引入了stack的方式(SST)提高效果。SST有两个预测阶段。在第一阶段,用m个模型预测m个目标。在后一阶段,通过变换训练集D,为每个目标学习一组m'元模型。...在变换后的训练集中,它使用输出空间的估计值。 ERC 这里需要注意的是,训练的时候我们依赖的是真实标签Y1,...,Ym-1,因为我们已经有了真实值,但对于预测,ERC必须依赖于估计值。...但作为ML中的一个假设,输入和输出变量应该是独立的。为了解决这个问题,在训练中拆除了一部分样本用于训练,并对估计值进行了k-折叠交叉验证,并将其用于训练部分,代码见参考资料。

    62110

    关于多目标任务有趣的融合方式

    关于多目标任务有趣的融合方式 简介 如何通过融合解决多标签分类(MLC)问题.这里给了两个的方案: SST 与大多数机器学习模型一样,这里的目标是构造一个将输入映射到输出的函数,在这种情况下,输出将是一组向量....单一目标(ST)考虑m个单一模型来预测多标签。...此外,还引入了stack的方式(SST)提高效果。SST有两个预测阶段。在第一阶段,用m个模型预测m个目标。在后一阶段,通过变换训练集D,为每个目标学习一组m'元模型。...在变换后的训练集中,它使用输出空间的估计值。 ERC 这里需要注意的是,训练的时候我们依赖的是真实标签Y1,...,Ym-1,因为我们已经有了真实值,但对于预测,ERC必须依赖于估计值。...但作为ML中的一个假设,输入和输出变量应该是独立的。为了解决这个问题,在训练中拆除了一部分样本用于训练,并对估计值进行了k-折叠交叉验证,并将其用于训练部分,代码见参考资料。

    51520

    独家 | 如何从头开始为MNIST手写数字分类建立卷积神经网络(附代码)

    我们可以使用scikit Learn API中的Kfold类来实现给定神经网络模型的k重交叉验证评估。...模型将通过五重交叉验证进行评估。选择k=5的值为重复评估提供基线,并且不需要太长的运行时间。每个测试集将是训练数据集的20%,或大约12000个示例,接近此问题的实际测试集大小。...有两个关键的方面要呈现:训练期间模型学习行为的记录和模型性能的评估。这些可以使用单独的函数来实现。 首先,记录包括创建一个折线图,显示在K-折叠交叉验证的每个折叠期间训练集和测试集的模型性能。...我们可以看到,与跨交叉验证折叠的基线相比,模型性能可能略有下降。 ?...K-折叠交叉验证过程中批量标准化模型的损失和精度学习曲线 接下来,给出了模型的估计性能,表明模型的平均精度略有下降:与基线模型的99.678相比,为99.658,但标准偏差可能略有下降。 ?

    1.6K20

    5种常用的交叉验证技术,保证评估模型的稳定性

    对于数据集中的每n次折叠,在数据集的N-1次折叠上构建模型。然后,对模型进行检验,检验n次折叠的有效性 在预测中记录每次迭代的错误。...然后可以使用100条记录进行交叉验证。假设折叠次数(N) = 10。 100个数据点被分成10个桶,每个桶有10条记录。 在这里,根据数据和N值创建了10个折叠。...最好的安排总是使数据在每个折叠中包含每个类的几乎一半实例。 时间序列的交叉认证 将时间序列数据随机分割为折叠数是行不通的,因为这种类型的数据是依赖于时间的。对这类数据的交叉验证应该跨时间进行。...对于一个时间序列预测问题,我们采用以下方法进行交叉验证。 时间序列交叉验证的折叠以向前链接的方式创建。 例如,假设我们有一个时间序列,显示了一家公司2014年至2019年6年间的年汽车需求。...我们选择一个列车集,它具有最小的观测量来拟合模型。逐步地,我们在每个折叠中改变我们的列车和测试集。 总结 在本文中,我们讨论了过拟合、欠拟合、模型稳定性和各种交叉验证技术,以避免过拟合和欠拟合。

    1.5K20

    5个常见的交叉验证技术介绍和可视化

    但是交叉验证的重要性有目共睹的,无论你是在使用小数据集做算法的改进,还是在Kaggle上打比赛,交叉验证都能够帮助我们防止过拟合,交叉验证的重要性已经不止一次的在kaggle的比赛中被证明了,所以请记住这句话...为什么要交叉验证? 如果不使用交叉验证,我们在训练时会将数据拆分为单个训练集和测试集。模型从训练数据中学习,然后通过预测测试集中所谓看不见的数据来测试其性能。...或者一个数值变量被拆分,使得某个阈值左侧和右侧的值在训练和集合中分布不均匀。或者接近于两个集合中变量的新分布与原始分布不同以至于模型从不正确的信息中学习。...在那之后,它还说明了解决方案: 在这种情况下,我们想知道在特定组上训练的模型是否能很好地泛化到看不见的组。为了衡量这一点,我们需要确保验证折叠中的所有样本都来自配对训练折叠中根本没有代表的组。...这告诉该拆分其如何区分每个组。 总结 在本篇文章中可能没有回答的一个问题是,“你应该总是使用交叉验证吗?”。答案是应该是肯定的。当您的数据集足够大时,任何随机拆分都可能与两组中的原始数据非常相似。

    1.3K30

    关于多目标任务有趣的融合方式

    干货  作者:炼丹小生来自:炼丹笔记 如何通过融合解决多标签分类(MLC)问题.这里给了两个的方案: SST 与大多数机器学习模型一样,这里的目标是构造一个将输入映射到输出的函数,在这种情况下,输出将是一组向量....单一目标(ST)考虑m个单一模型来预测多标签。...此外,还引入了stack的方式(SST)提高效果。SST有两个预测阶段。在第一阶段,用m个模型预测m个目标。在后一阶段,通过变换训练集D,为每个目标学习一组m'元模型。...在变换后的训练集中,它使用输出空间的估计值。 ERC 这里需要注意的是,训练的时候我们依赖的是真实标签Y1,...,Ym-1,因为我们已经有了真实值,但对于预测,ERC必须依赖于估计值。...但作为ML中的一个假设,输入和输出变量应该是独立的。为了解决这个问题,在训练中拆除了一部分样本用于训练,并对估计值进行了k-折叠交叉验证,并将其用于训练部分,代码见参考资料。

    54130
    领券