首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

目标检测入门(四):特征复用、实时性

文章结构 本文的第一部分关注检测模型的头部部分。对与每张图片,深度网络其实是通过级联的映射获得了在某一流形上的一个表征,这个表征相比原图片更有计算机视角下的语义性。例如,使用Softmax作为损失函数的分类网络,最后一层获得的张量常常展现出成簇的分布。深度网络因分布式表示带来的指数级增益,拥有远超其他机器学习模型的表示能力,近年来,有不少致力于对深度网络习得特征进行可视化的工作,为研究者提供了部分有直观意义的感知,如浅层学习线条纹理,深层学习物体轮廓。然而,现阶段的深度模型仍然是一个灰盒,缺乏有效的概念去描

07

超越MobileNetV3,谷歌提出MobileDets:移动端目标检测新标杆

Inverted bottleneck layers, IBN已成为终端设备SOTA目标检测方法的主要模块。而在这篇文章里,作者通过重新分析研究终端芯片加速下的常规卷积而对“IBN主导的网络架构是否最优”提出了质疑。作者通过将常规卷积纳入搜索空间取得了延迟-精度均衡下的性能提升,得到了一类目标检测模型:MobileDets。在COCO目标检测任务上,基于同等终端CPU推理延迟,MobileDets以1.7mAP性能优于MobileNetV3+SSDLite,以1.9mAP性能优于MobileNetV2+SSDLite;在EdgeTPU平台上,以3.7mAP性能优于MobileNetV2+SSDLite且推理更快;在DSP平台上,以3.4mAP性能优于MobileNetV2+SSDLite且推理更快。与此同时,在不采用FPN的情况下,在终端CPU平台,MobileDets取得了媲美MnasFPN的性能;在EdgeTPU与DSP平台具有更优的mAP指标,同时推理速度快2倍。

03

干货 | 目标检测入门,看这篇就够了(下)

作者 | 李家丞( 同济大学数学系本科在读,现格灵深瞳算法部实习生) 近年来,深度学习模型逐渐取代传统机器视觉方法而成为目标检测领域的主流算法,本系列文章将回顾早期的经典工作,并对较新的趋势做一个全景式的介绍,帮助读者对这一领域建立基本的认识。(营长注:因本文篇幅较长,营长将其分为上(点击查看)、下两部分。) 导言:目标检测的任务表述 如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。 那么,如何

08

干货 | 目标检测入门,看这篇就够了(下)

作者 | 李家丞( 同济大学数学系本科在读,现格灵深瞳算法部实习生) 近年来,深度学习模型逐渐取代传统机器视觉方法而成为目标检测领域的主流算法,本系列文章将回顾早期的经典工作,并对较新的趋势做一个全景式的介绍,帮助读者对这一领域建立基本的认识。(因本文篇幅较长,营长将其分为上(点击查看)、下两部分。) 导言:目标检测的任务表述 如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。 那么,如何理解一张图片?

04

【无人机数据集】开源 | 可以用于目标检测的无人机数据集

装有摄像头的无人机具有捕获空中图像(鸟瞰图)的优势。由于空中图像数据的可用性和目标检测算法的新进展,使得计算机视觉界将注意力集中到航摄图像上的目标检测任务。但是在现有的带有目标标注的可视化的空中数据集中,无人机仅仅被用作飞行摄像机,丢弃了关于飞行的相关数据类型(例如,时间、位置、内部传感器)。在本文中,提出了一个多用途空中数据集(AU-AIR),它具有多模态传感器数据,即视觉、时间、位置、海拔、IMU、速度等,这些数据采集于真实的外环境中。AU-AIR数据集包含原始数据,可用于从录制的RGB视频中提取帧。此外,在目标检测任务的背景下,我们强调了自然图像和航摄图像之间的差异。我们在AU-AIR数据集上对可移动物体探测器(包括YOLOv3-Tiny和MobileNetv2-SSDLite)进行训练和测试,使其用于无人机的机载计算机进行实时物体检测。由于本文的数据集记录的数据类型具有多样性,有助于填补计算机视觉和机器人学之间的差距。

03
领券